
UNIVERSITY OF BRISTOL

Practice Paper 2A (practical section)

School of Computer Science

Second In-class Test for the Degree of
Master of Science in Computer Science (conversion)

COMSM1302
Overview of Computer Architecture

TIME ALLOWED:
2 Hours

This paper contains four questions.
All questions will be marked.

The maximum for this paper is 50 marks.

Other Instructions

1. You are only permitted to use the following software: Calculator, KCalc, Text
editor, the Hack assembler, the Hack CPU emulator, and a web browser.

2. You are not permitted to visit any web sites other than those in the “In-class test
2” sidebar of the unit Blackboard page.

3. You are not permitted the use of physical calculators.

4. You are not permitted external reference materials.

5. This is not a real exam paper.

TURN OVER ONLY WHEN TOLD TO BEGIN WORK

Page 1 of 3

For each question, write Hack assembly within a .asm file. Each file should be named according to
its question number, e.g. Q4.asm. You are permitted (and encouraged) to use the Hack assembler
and Hack CPU emulator to test your code. You are not permitted to use the Hack VM emulator.

Full marks will be given to all programs that display the correct behaviour and obey any restric-
tions explicitly specified in the question. Partial marks will be available. We recommend that you
include brief comments describing your code’s intended behaviour to ensure that we understand
your thought process correctly while marking; however, beyond this you will not be marked on e.g.
code complexity or efficiency unless otherwise stated.

In an actual test, you should zip your completed .asm files and submit them to the “In-Class Test
2 (Practical component) submission point” on Blackboard. Multiple submissions are allowed, but
only the last one will be marked. No submissions are allowed from outside the test room under any
circumstances.

Question 1 (10 marks)
Your code should read the values in RAM[0] and RAM[1], then behave as follows.

• Add RAM[0] to RAM[1], then store the result in RAM[2].
• If RAM[2] is positive, then multiply RAM[2] by −1.
• Take a bitwise OR of RAM[2] with RAM[1] and store the result in RAM[2].

You may assume that RAM[0] and RAM[1] are between −10000 and 10000 (so that no integer
overflows can occur).

Question 2 (15 marks)
Your code should do nothing until the letters ‘O’ and ‘M’ are pressed on the keyboard in sequence
(‘O’ first, then ‘M’) with no other keys being pressed in between. It should then colour every
pixel on the screen black. For example, if the key sequence ‘OHMOMAAAAHWAITNOIDID-
NTMEANTODOTHATUNDOUNDOUNDO’ is entered, then the screen should turn black on
the second ‘M’ and then not do anything further.
Your code for Question 2 must be at most 200 lines long, or you will receive very
limited credit.

Question 3 (15 marks)
Your code should be a direct translation of the Hack VM instruction call Main.exam 7 into
assembly. In other words, your code should assume that the current contents of RAM are a state
of the Hack VM, and then change RAM (and the program counter) in exactly the same way
that the call Main.exam 7 statement would. You may assume the standard memory map from
Hack VM to assembly (given in the reference materials), that the label auto$52 is unused by
any other piece of assembly code, and that the assembly code corresponding to the Main.exam
function starts with the label (call$Main.exam). You do not need to know the corresponding
function Main.exam * command to answer this question.

Question 4 (10 marks)
In decimal, the digital root of a number x is defined as follows. Take the digits of x and add them
to get a new number y. Then take the digits of y and add them to get a new number z. Then
take the digits of z and add them, repeating the process until you end up with a single-digit

Page 2 of 3 Qu. continues . . .

(cont.)

number, which is the output. For example, to find the digital root of 491, add 4 + 9 + 1 = 14,
then add 1 + 4 = 5, then return 5.
Binary digital roots work the same way, but in base 2. For example, to take the binary digital
root of 103 = 1100111, we add 1 + 1 + 0 + 0 + 1 + 1 + 1 to get 5 = 101, then add 1 + 0 + 1 to
get 2 = 10, then add 1 + 0 = 1 to get 1. In fact, it can be shown that every binary digital root
will be 1, but different numbers take different paths to get there.
Your code should take the binary digital root of the value in RAM[0]. You should write the
result of every digit sum on the “path” from RAM[0] to 1 into RAM, starting from RAM[1]. For
example, if RAM[0] = 103 and all other memory is zero before running your code, then after
your code has been run then we should have

RAM[0] = 103, RAM[1] = 5, RAM[2] = 2, RAM[3] = 1.

If instead RAM[0] = 255 before running your code, then after running your code we should have

RAM[0] = 255, RAM[1] = 8, RAM[2] = 1.

(You do not need to be able to access the morphogenetic field in order to solve this question!)

Page 3 of 3

END OF PAPER

