
LOGIC GATES
Kira Clements, University of Bristol

Each logic gate implements a simple boolean

function e.g. A ∧ B.

These are an abstract view of logical functions!

For now, we’ll taking a black box view of these and

focus on utilising their functionality rather than

looking into how they function.

LOGIC GATES

GATE SYMBOLS

NOT

if (in == 0) then out == 1,

else out == 0

AND

if ((a == 1) and (b == 1))

then out == 1,

else out == 0

OR

if ((a == 0) and (b == 0))

then out == 0,

else out == 1

MORE GATE SYMBOLS

if ((a == 1) and (b == 1))

then out == 0,

else out == 1

NAND (NOT-AND) NOR (NOT-OR)

if ((a == 0) and (b == 0))

then out == 1,

else out == 0

These are important gates,

as each is functionally

complete i.e every

boolean expression can be

implemented just using

one of these types of

gates, making them

excellent building blocks.

MORE GATE SYMBOLS

if (a == b) then out == 0,

else out == 1

XOR XNOR (NOT-XOR)

if (a == b) then out == 1,

else out == 0

These gates aren’t used as

commonly, as they’re

easily implemented using

some combination of the

previous logic gates, but

it’s still useful to be

recognise them!

IMPLEMENTING LOGIC
A logical expression can be implemented by constructing a circuit whereby each logical

operator is represented by its corresponding gate.

¬A ∧ B

¬(B ∨ C)

(¬A ∧ B) ∨ ¬(B ∨ C)

Complex circuits

can be built up

from simpler ones

Signals can be

copied by

branching them

IMPLEMENTING LOGIC
A logical expression can be implemented in a variety of ways, but we aim to optimise this by

using the least number of gates.

Less gates = lower energy consumption and faster computation!

(¬A ∧ B) ∨ ¬(B ∨ C)(¬A ∨ (¬B ∧ ¬C)) ∧ (B ∨ (¬B ∧ ¬C)

Both circuits produce the same output, but doesn’t the left look a lot harder to understand?

Not only is the basis formula not fully simplified, but there are duplicate gates serving the

same purpose.

Rather than using

3 more gates, the

output signal from

(¬B ∧ ¬C) could

be branched

¬(B ∨ C) uses

one less gate

than (¬B ∧ ¬C)

Simulation tools are used to test circuit designs

before physical implementation (which can be very

expensive when produced at scale).

On this course, we’ll be using Logisim to design and

validate circuits that implement logical expressions.

This is an educational tool aiming to help you

explore how circuits work.

The full Logisim user guide can be found here.

LOGISIM

https://sourceforge.net/projects/circuit/files/2.7.x/2.7.1/
http://www.cburch.com/logisim/docs/2.3.0/guide/index.html

Appropriate logic gates can be inserted first, to

create a skeleton of your circuit. These can be

found under the Gates folder in the explorer pane

on the left of the screen, while basic gates are

also conveniently located on the toolbar at the top

of the screen.

Wires can be dragged using the edit tool () from one

spot on a component to link another. Existing wires

can be dragged to extend, shorten, or branch them.

Blue represents an unknown 1-bit value.

Dark green represents a 0 1-bit value.

Light green represents a 1 1-bit value.

Red represents an error.

Input (square) and output (round) pins are also

conveniently located on the toolbar at the top of the

screen. These can be connected to the suitable

wires in your circuit.

The poke tool () can then be used to toggle the

values of the input pins and test whether your circuit

outputs what is expected.

The attributes table, located on the left of the

screen, allows us to edit components configuration.

For example, we can change the number of inputs a

logic gates expects, add a label to a component,

alter the direction of a component, or change a pin

to be an input or output.

New circuits can be created by clicking on

Project > Add Circuit…

Your circuits can then be used like any premade

component, by single clicking on it in the explorer

pane to use it as a tool. Double-clicking on it in the

explorer pane allows you to edit the circuit.

The appearance of your newly created

component can be edited such as rearranging

the input/output pins.

Clicking on a pin will give you a helpful pop up

that indicates which pin or your circuit it

corresponds to.

	Slide 1
	Slide 2
	Slide 3: Gate symbols
	Slide 4: More Gate symbols
	Slide 5: More Gate symbols
	Slide 6: Implementing logic
	Slide 7: Implementing logic
	Slide 8
	Slide 9
	Slide 10
	Slide 11

