
NAND
Kira Clements, University of Bristol



FUNCTIONALLY COMPLETE
NAND is functionally complete, meaning any boolean expression can be expressed just by 

a combination of NAND operators. This makes it an excellent building block and makes 

physical production more efficient as only one type of gate needs to be manufactured.

NOR is also functionally complete but NAND is the industry standard as it is 

structurally faster than NOR.

Any circuit can be 

re-implemented 

using NAND gates 

only



DOUBLE NEGATION
Although double negation is generally a method of simplifying expressions, by cancelling out 

the negations, this rule also allows us to add a double negation to an expression without 

changing its meaning i.e. the new expression will be logically equivalent.

DOUBLE NEGATION

¬¬A ≡ A

Two negations 

cancel each 

other out

Combined with De Morgan’s Laws, this creates a powerful tool for translating any boolean 

function into one expressed only using NANDs.

For example, these show that an OR gate is equivalent to a NAND gate with inverted inputs:

A ∨ B                           ¬¬(A ∨ B)                               ¬(¬A ∧ ¬B)
Double 

negation
De Morgan’s



NOT IS NAND?
Double negation also shows that an AND gate is equivalent to a NAND gate with an inverted output:

You might notice that both our NAND implementations so far include at least one negation other 

than those that are obviously part of a NAND. We are satisfied with this as negation is logically 

equivalent to a NAND with a copied input:

To show this more explicitly, our NAND implementation of AND could be expressed as:

This means that once our logical expression is in a suitable form, we can count the number of NAND 

gates needed to implement it by counting the number of negations!

A ∧ B ≡ ¬¬(A ∧ B)

¬A ≡ ¬(A ∧ A)

¬(¬(A ∧ B) ∧ ¬(A ∧ B))



BUBBLE PUSHING
Looking at NAND implementations visually, we can consider each negation to be a bubble 

such as appears on the tips of NOT, NAND and NOR gates. Bubble pushing is then a 

technique to apply De Morgan's theorem directly to the logic diagram.

If we have a simplified circuit that only consists of AND, OR, and NOT gates, we then begin at 

the output and simply need to push bubbles or add double bubbles where appropriate to 

synthesise an equivalent NAND implementation.

De Morgan’s 

theorem

NAND

¬(A ∧ B) ≡ ¬A ∨ ¬B

NOR

¬(A ∨ B) ≡ ¬A ∧ ¬B



NAND CIRCUITS
NAND implementation can often be simplified in a variety of ways and it’s best to attempt 

simplification of the formula. However, there are some methods for simplifying the circuit after it’s 

been created:

Remove 2 successive NANDs that act as a double negation.

Combine NANDs that serve the same purpose by branching the output instead.



LED signal

Output pins 

(4 copies)

B input pin (plus 

copy pin)

A input pin (plus 

copy pin)

Output pins 

(4 copies)

Switch

(0 when not 

pressed)

Constant 1 

pin

NAND BOARDS

4 x input switches 16 x NANDs

16 x



NAND 

BOARDS

NAND 1

NAND 2

NAND 3

NAND 1

NAND 2

NAND 3

It’s important to plan out how to 

transfer a circuit design onto a 

NAND board, as it can quickly 

become a confusing mess of 

wires.



NAND BOARDS

Please watch the NAND board introduction video 

before attending the first lab.

Well done on completing week 1 lectures!

https://www.youtube.com/watch?v=DJDXp7yXp-w
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