
NAND
Kira Clements, University of Bristol

FUNCTIONALLY COMPLETE
NAND is functionally complete, meaning any boolean expression can be expressed just by

a combination of NAND operators. This makes it an excellent building block and makes

physical production more efficient as only one type of gate needs to be manufactured.

NOR is also functionally complete but NAND is the industry standard as it is

structurally faster than NOR.

Any circuit can be

re-implemented

using NAND gates

only

DOUBLE NEGATION
Although double negation is generally a method of simplifying expressions, by cancelling out

the negations, this rule also allows us to add a double negation to an expression without

changing its meaning i.e. the new expression will be logically equivalent.

DOUBLE NEGATION

¬¬A ≡ A

Two negations

cancel each

other out

Combined with De Morgan’s Laws, this creates a powerful tool for translating any boolean

function into one expressed only using NANDs.

For example, these show that an OR gate is equivalent to a NAND gate with inverted inputs:

A ∨ B ¬¬(A ∨ B) ¬(¬A ∧ ¬B)
Double

negation
De Morgan’s

NOT IS NAND?
Double negation also shows that an AND gate is equivalent to a NAND gate with an inverted output:

You might notice that both our NAND implementations so far include at least one negation other

than those that are obviously part of a NAND. We are satisfied with this as negation is logically

equivalent to a NAND with a copied input:

To show this more explicitly, our NAND implementation of AND could be expressed as:

This means that once our logical expression is in a suitable form, we can count the number of NAND

gates needed to implement it by counting the number of negations!

A ∧ B ≡ ¬¬(A ∧ B)

¬A ≡ ¬(A ∧ A)

¬(¬(A ∧ B) ∧ ¬(A ∧ B))

BUBBLE PUSHING
Looking at NAND implementations visually, we can consider each negation to be a bubble

such as appears on the tips of NOT, NAND and NOR gates. Bubble pushing is then a

technique to apply De Morgan's theorem directly to the logic diagram.

If we have a simplified circuit that only consists of AND, OR, and NOT gates, we then begin at

the output and simply need to push bubbles or add double bubbles where appropriate to

synthesise an equivalent NAND implementation.

De Morgan’s

theorem

NAND

¬(A ∧ B) ≡ ¬A ∨ ¬B

NOR

¬(A ∨ B) ≡ ¬A ∧ ¬B

NAND CIRCUITS
NAND implementation can often be simplified in a variety of ways and it’s best to attempt

simplification of the formula. However, there are some methods for simplifying the circuit after it’s

been created:

Remove 2 successive NANDs that act as a double negation.

Combine NANDs that serve the same purpose by branching the output instead.

LED signal

Output pins

(4 copies)

B input pin (plus

copy pin)

A input pin (plus

copy pin)

Output pins

(4 copies)

Switch

(0 when not

pressed)

Constant 1

pin

NAND BOARDS

4 x input switches 16 x NANDs

16 x

NAND

BOARDS

NAND 1

NAND 2

NAND 3

NAND 1

NAND 2

NAND 3

It’s important to plan out how to

transfer a circuit design onto a

NAND board, as it can quickly

become a confusing mess of

wires.

NAND BOARDS

Please watch the NAND board introduction video

before attending the first lab.

Well done on completing week 1 lectures!

https://www.youtube.com/watch?v=DJDXp7yXp-w

	Slide 1
	Slide 2: Functionally complete
	Slide 3: Double negation
	Slide 4: Not is nand?
	Slide 5: Bubble pushing
	Slide 6: Nand Circuits
	Slide 7: Nand boards
	Slide 8: Nand boards
	Slide 9: Nand boards

