
Extending Hack VM

John Lapinskas, University of Bristol

John Lapinskas Extending Hack VM 1/ 7



Our goals for this week

Physics
Transistors

Gates

Components

Computer microarchitecture
Instruction set architecture

Assembly

Intermediate representation

High-level language

Hardware

Software

This week, we’ll be extending Hack VM to include:

Function calls.

Proper compile-time memory allocation. (Solved at the same time!)

Multi-file compilation support for libraries. (Easy by comparison.)

We’ll also talk about run-time memory allocation (i.e. malloc).

Next week, we’ll be moving on to our high-level language — Jack.

John Lapinskas Extending Hack VM 2/ 7



Our goals for this week

Physics
Transistors

Gates

Components

Computer microarchitecture
Instruction set architecture

Assembly

Intermediate representation

High-level language

Hardware

Software

This week, we’ll be extending Hack VM to include:

Function calls.

Proper compile-time memory allocation. (Solved at the same time!)

Multi-file compilation support for libraries. (Easy by comparison.)

We’ll also talk about run-time memory allocation (i.e. malloc).

Next week, we’ll be moving on to our high-level language — Jack.

John Lapinskas Extending Hack VM 2/ 7



Our goals for this week

Physics
Transistors

Gates

Components

Computer microarchitecture
Instruction set architecture

Assembly

Intermediate representation

High-level language

Hardware

Software

This week, we’ll be extending Hack VM to include:

Function calls.

Proper compile-time memory allocation. (Solved at the same time!)

Multi-file compilation support for libraries. (Easy by comparison.)

We’ll also talk about run-time memory allocation (i.e. malloc).

Next week, we’ll be moving on to our high-level language — Jack.

John Lapinskas Extending Hack VM 2/ 7



Our goals for this week

Physics
Transistors

Gates

Components

Computer microarchitecture
Instruction set architecture

Assembly

Intermediate representation

High-level language

Hardware

Software

This week, we’ll be extending Hack VM to include:

Function calls.

Proper compile-time memory allocation. (Solved at the same time!)

Multi-file compilation support for libraries. (Easy by comparison.)

We’ll also talk about run-time memory allocation (i.e. malloc).

Next week, we’ll be moving on to our high-level language — Jack.

John Lapinskas Extending Hack VM 2/ 7



Our goals for this week

Physics
Transistors

Gates

Components

Computer microarchitecture
Instruction set architecture

Assembly

Intermediate representation

High-level language

Hardware

Software

This week, we’ll be extending Hack VM to include:

Function calls.

Proper compile-time memory allocation. (Solved at the same time!)

Multi-file compilation support for libraries. (Easy by comparison.)

We’ll also talk about run-time memory allocation (i.e. malloc).

Next week, we’ll be moving on to our high-level language — Jack.
John Lapinskas Extending Hack VM 2/ 7



How functions should behave: A case study

Recall the (bad!) recursive algorithm
from Programming in C to compute the
Fibonacci sequence. The sequence is:

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2.

So the algorithm is:

fib(n) =


0 if n = 0,

1 if n = 1,

fib(n − 1) + fib(n − 2) if n ≥ 2.

Here we have an implementation with
some static variables to keep track of
how many times the function has been
called and how many calls deep we are
into the recursion.

John Lapinskas Extending Hack VM 3/ 7



Summary of desired behaviour

On each call to fibonacci:

Program flow jumps to the start of the function.

The local variables x and y are cleared.

The argument variable n is set by the call.

The static variables times called and layers deep are unchanged.

On function return:

Program flow returns to the line after the original function call.

The local variables x and y return to their old values.

The argument variable n returns to its old value.

The static variables times called and layers deep are unchanged.

All of this must be robust for an arbitrary number of function calls within
function calls (memory permitting), including recursive calls.

[See video for a demonstration in CLion with fibonacci-illustration.c.]

John Lapinskas Extending Hack VM 4/ 7



Compiling multiple files

If the VM translator is given a folder, it should operate as follows:

All .vm files in the folder should be translated into one assembly file.

All VM code should occur within functions.

The compiled code should start by setting SP to 256 as normal, then
call a function Sys.init in a VM file called Sys.vm.

This is analogous to main in C.
Sys.init will be provided for you in test code.
This means the order in which the files are translated won’t matter.

All functions in the file abc.vm (say) must have names starting with
“abc.”, e.g. abc.print or abc.crash.

This prevents name clashes between files, and our Jack compiler will
enforce it by compiling a Jack function named xyz in a file named abc

to a VM function named abc.xyz.

If two instances of the same static address or label occur in
different files, they should compile to different addresses.

Your VM translator already does this!

John Lapinskas Extending Hack VM 5/ 7



Compiling multiple files

If the VM translator is given a folder, it should operate as follows:

All .vm files in the folder should be translated into one assembly file.

All VM code should occur within functions.

The compiled code should start by setting SP to 256 as normal, then
call a function Sys.init in a VM file called Sys.vm.

This is analogous to main in C.
Sys.init will be provided for you in test code.
This means the order in which the files are translated won’t matter.

All functions in the file abc.vm (say) must have names starting with
“abc.”, e.g. abc.print or abc.crash.

This prevents name clashes between files, and our Jack compiler will
enforce it by compiling a Jack function named xyz in a file named abc

to a VM function named abc.xyz.

If two instances of the same static address or label occur in
different files, they should compile to different addresses.

Your VM translator already does this!

John Lapinskas Extending Hack VM 5/ 7



Compiling multiple files

If the VM translator is given a folder, it should operate as follows:

All .vm files in the folder should be translated into one assembly file.

All VM code should occur within functions.

The compiled code should start by setting SP to 256 as normal, then
call a function Sys.init in a VM file called Sys.vm.

This is analogous to main in C.
Sys.init will be provided for you in test code.
This means the order in which the files are translated won’t matter.

All functions in the file abc.vm (say) must have names starting with
“abc.”, e.g. abc.print or abc.crash.

This prevents name clashes between files, and our Jack compiler will
enforce it by compiling a Jack function named xyz in a file named abc

to a VM function named abc.xyz.

If two instances of the same static address or label occur in
different files, they should compile to different addresses.

Your VM translator already does this!

John Lapinskas Extending Hack VM 5/ 7



Compiling multiple files

If the VM translator is given a folder, it should operate as follows:

All .vm files in the folder should be translated into one assembly file.

All VM code should occur within functions.

The compiled code should start by setting SP to 256 as normal, then
call a function Sys.init in a VM file called Sys.vm.

This is analogous to main in C.
Sys.init will be provided for you in test code.
This means the order in which the files are translated won’t matter.

All functions in the file abc.vm (say) must have names starting with
“abc.”, e.g. abc.print or abc.crash.

This prevents name clashes between files, and our Jack compiler will
enforce it by compiling a Jack function named xyz in a file named abc

to a VM function named abc.xyz.

If two instances of the same static address or label occur in
different files, they should compile to different addresses.

Your VM translator already does this!

John Lapinskas Extending Hack VM 5/ 7



Compiling multiple files

If the VM translator is given a folder, it should operate as follows:

All .vm files in the folder should be translated into one assembly file.

All VM code should occur within functions.

The compiled code should start by setting SP to 256 as normal, then
call a function Sys.init in a VM file called Sys.vm.

This is analogous to main in C.
Sys.init will be provided for you in test code.
This means the order in which the files are translated won’t matter.

All functions in the file abc.vm (say) must have names starting with
“abc.”, e.g. abc.print or abc.crash.

This prevents name clashes between files, and our Jack compiler will
enforce it by compiling a Jack function named xyz in a file named abc

to a VM function named abc.xyz.

If two instances of the same static address or label occur in
different files, they should compile to different addresses.

Your VM translator already does this!

John Lapinskas Extending Hack VM 5/ 7



Jack and the “operating system”

Jack will come with what nand2tetris optimistically calls an “operating system”.

Really it’s a collection of eight standard libraries written in Jack! (In fairness, this
is what an OS is at its core — you could build a single-process OS like DOS on
this foundation by extending the Sys library, viewing processes as function calls.)

Sys.vm provides Sys.init and functions to halt, crash, or wait a certain
number of milliseconds.

Memory.vm provides functions for memory allocation (see later).

Array.vm provides functions for an array data type.

String.vm provides functions for a string data type.

Keyboard.vm and Screen.vm provide functions for direct input and output.

Output.vm provides functions for displaying and editing text.

Math.vm provides functions for multiplication, division, minimum, maximum,
and square root.

You will have access to Hack VM versions of these next week when writing the
Jack compiler. The details can be found in Nisan and Schocken appendix 6.

None of them are examinable!

John Lapinskas Extending Hack VM 6/ 7



Jack and the “operating system”

Jack will come with what nand2tetris optimistically calls an “operating system”.

Really it’s a collection of eight standard libraries written in Jack! (In fairness, this
is what an OS is at its core — you could build a single-process OS like DOS on
this foundation by extending the Sys library, viewing processes as function calls.)

Sys.vm provides Sys.init and functions to halt, crash, or wait a certain
number of milliseconds.

Memory.vm provides functions for memory allocation (see later).

Array.vm provides functions for an array data type.

String.vm provides functions for a string data type.

Keyboard.vm and Screen.vm provide functions for direct input and output.

Output.vm provides functions for displaying and editing text.

Math.vm provides functions for multiplication, division, minimum, maximum,
and square root.

You will have access to Hack VM versions of these next week when writing the
Jack compiler. The details can be found in Nisan and Schocken appendix 6.

None of them are examinable!
John Lapinskas Extending Hack VM 6/ 7



Bootstrapping

In the nand2tetris course, these libraries are actually all written in Jack.
Isn’t using Jack code to write a Jack compiler “cheating”?

No!

Making a compiler that can compile itself is called bootstrapping, and the
normal approach is:

Write a placeholder Jack-to-Hack Compiler A, either:

in Hack VM/assembly directly, or
in another system entirely, e.g. C on x86-64 (cross-compiling).

Write a better-quality Jack-to-Hack Compiler B in Jack itself.

Use Compiler A to compile Compiler B to Hack machine code.

Use Compiler B to re-compile Compiler B to Hack machine code.

Throw Compiler A away and use Compiler B from now on.

Even not cross-compiling, the goal is to write as little low-level code as possible.

The “OS” functions are mostly straightforward, and there are no new architecture
ideas except for Memory.vm (which we’ll talk about later this week).

That said, if you want practice with assembly/VM, they make good exercises!

John Lapinskas Extending Hack VM 7/ 7



Bootstrapping

In the nand2tetris course, these libraries are actually all written in Jack.
Isn’t using Jack code to write a Jack compiler “cheating”? No!

Making a compiler that can compile itself is called bootstrapping, and the
normal approach is:

Write a placeholder Jack-to-Hack Compiler A, either:

in Hack VM/assembly directly, or
in another system entirely, e.g. C on x86-64 (cross-compiling).

Write a better-quality Jack-to-Hack Compiler B in Jack itself.

Use Compiler A to compile Compiler B to Hack machine code.

Use Compiler B to re-compile Compiler B to Hack machine code.

Throw Compiler A away and use Compiler B from now on.

Even not cross-compiling, the goal is to write as little low-level code as possible.

The “OS” functions are mostly straightforward, and there are no new architecture
ideas except for Memory.vm (which we’ll talk about later this week).

That said, if you want practice with assembly/VM, they make good exercises!

John Lapinskas Extending Hack VM 7/ 7



Bootstrapping

In the nand2tetris course, these libraries are actually all written in Jack.
Isn’t using Jack code to write a Jack compiler “cheating”? No!

Making a compiler that can compile itself is called bootstrapping, and the
normal approach is:

Write a placeholder Jack-to-Hack Compiler A, either:

in Hack VM/assembly directly, or
in another system entirely, e.g. C on x86-64 (cross-compiling).

Write a better-quality Jack-to-Hack Compiler B in Jack itself.

Use Compiler A to compile Compiler B to Hack machine code.

Use Compiler B to re-compile Compiler B to Hack machine code.

Throw Compiler A away and use Compiler B from now on.

Even not cross-compiling, the goal is to write as little low-level code as possible.

The “OS” functions are mostly straightforward, and there are no new architecture
ideas except for Memory.vm (which we’ll talk about later this week).

That said, if you want practice with assembly/VM, they make good exercises!

John Lapinskas Extending Hack VM 7/ 7



Bootstrapping

In the nand2tetris course, these libraries are actually all written in Jack.
Isn’t using Jack code to write a Jack compiler “cheating”? No!

Making a compiler that can compile itself is called bootstrapping, and the
normal approach is:

Write a placeholder Jack-to-Hack Compiler A, either:

in Hack VM/assembly directly, or
in another system entirely, e.g. C on x86-64 (cross-compiling).

Write a better-quality Jack-to-Hack Compiler B in Jack itself.

Use Compiler A to compile Compiler B to Hack machine code.

Use Compiler B to re-compile Compiler B to Hack machine code.

Throw Compiler A away and use Compiler B from now on.

Even not cross-compiling, the goal is to write as little low-level code as possible.

The “OS” functions are mostly straightforward, and there are no new architecture
ideas except for Memory.vm (which we’ll talk about later this week).

That said, if you want practice with assembly/VM, they make good exercises!

John Lapinskas Extending Hack VM 7/ 7



Bootstrapping

In the nand2tetris course, these libraries are actually all written in Jack.
Isn’t using Jack code to write a Jack compiler “cheating”? No!

Making a compiler that can compile itself is called bootstrapping, and the
normal approach is:

Write a placeholder Jack-to-Hack Compiler A, either:

in Hack VM/assembly directly, or
in another system entirely, e.g. C on x86-64 (cross-compiling).

Write a better-quality Jack-to-Hack Compiler B in Jack itself.

Use Compiler A to compile Compiler B to Hack machine code.

Use Compiler B to re-compile Compiler B to Hack machine code.

Throw Compiler A away and use Compiler B from now on.

Even not cross-compiling, the goal is to write as little low-level code as possible.

The “OS” functions are mostly straightforward, and there are no new architecture
ideas except for Memory.vm (which we’ll talk about later this week).

That said, if you want practice with assembly/VM, they make good exercises!

John Lapinskas Extending Hack VM 7/ 7



Bootstrapping

In the nand2tetris course, these libraries are actually all written in Jack.
Isn’t using Jack code to write a Jack compiler “cheating”? No!

Making a compiler that can compile itself is called bootstrapping, and the
normal approach is:

Write a placeholder Jack-to-Hack Compiler A, either:

in Hack VM/assembly directly, or
in another system entirely, e.g. C on x86-64 (cross-compiling).

Write a better-quality Jack-to-Hack Compiler B in Jack itself.

Use Compiler A to compile Compiler B to Hack machine code.

Use Compiler B to re-compile Compiler B to Hack machine code.

Throw Compiler A away and use Compiler B from now on.

Even not cross-compiling, the goal is to write as little low-level code as possible.

The “OS” functions are mostly straightforward, and there are no new architecture
ideas except for Memory.vm (which we’ll talk about later this week).

That said, if you want practice with assembly/VM, they make good exercises!

John Lapinskas Extending Hack VM 7/ 7



Bootstrapping

In the nand2tetris course, these libraries are actually all written in Jack.
Isn’t using Jack code to write a Jack compiler “cheating”? No!

Making a compiler that can compile itself is called bootstrapping, and the
normal approach is:

Write a placeholder Jack-to-Hack Compiler A, either:

in Hack VM/assembly directly, or
in another system entirely, e.g. C on x86-64 (cross-compiling).

Write a better-quality Jack-to-Hack Compiler B in Jack itself.

Use Compiler A to compile Compiler B to Hack machine code.

Use Compiler B to re-compile Compiler B to Hack machine code.

Throw Compiler A away and use Compiler B from now on.

Even not cross-compiling, the goal is to write as little low-level code as possible.

The “OS” functions are mostly straightforward, and there are no new architecture
ideas except for Memory.vm (which we’ll talk about later this week).

That said, if you want practice with assembly/VM, they make good exercises!

John Lapinskas Extending Hack VM 7/ 7



Bootstrapping

In the nand2tetris course, these libraries are actually all written in Jack.
Isn’t using Jack code to write a Jack compiler “cheating”? No!

Making a compiler that can compile itself is called bootstrapping, and the
normal approach is:

Write a placeholder Jack-to-Hack Compiler A, either:

in Hack VM/assembly directly, or
in another system entirely, e.g. C on x86-64 (cross-compiling).

Write a better-quality Jack-to-Hack Compiler B in Jack itself.

Use Compiler A to compile Compiler B to Hack machine code.

Use Compiler B to re-compile Compiler B to Hack machine code.

Throw Compiler A away and use Compiler B from now on.

Even not cross-compiling, the goal is to write as little low-level code as possible.

The “OS” functions are mostly straightforward, and there are no new architecture
ideas except for Memory.vm (which we’ll talk about later this week).

That said, if you want practice with assembly/VM, they make good exercises!

John Lapinskas Extending Hack VM 7/ 7


