
Functions in general

John Lapinskas, University of Bristol

John Lapinskas Frames 1 / 10



A checklist to implement functions

We have four sub-goals for functions in Hack VM. We’ll first discuss how
to accomplish them in general, for any language (e.g. C), then discuss
Hack VM specifically next video.

Goal 1: Program flow. On function call, we should jump to the start of
the function. On function return, we should jump back.

Goal 2: Memory allocation. On function call, we should allocate memory
for the new local and argument variables. On function return, we should
free that memory.

Goal 3: Program state. On function call, we should set aside all existing
local/argument variables and most register values, and replace them with
new ones. On function return, we should pick them back up unchanged.

Goal 4: Static variables should be unaffected by function calls and returns.

John Lapinskas Frames 2 / 10



A checklist to implement functions

We have four sub-goals for functions in Hack VM. We’ll first discuss how
to accomplish them in general, for any language (e.g. C), then discuss
Hack VM specifically next video.

Goal 1: Program flow. On function call, we should jump to the start of
the function. On function return, we should jump back.

Goal 2: Memory allocation. On function call, we should allocate memory
for the new local and argument variables. On function return, we should
free that memory.

Goal 3: Program state. On function call, we should set aside all existing
local/argument variables and most register values, and replace them with
new ones. On function return, we should pick them back up unchanged.

Goal 4: Static variables should be unaffected by function calls and returns.

John Lapinskas Frames 2 / 10



A checklist to implement functions

We have four sub-goals for functions in Hack VM. We’ll first discuss how
to accomplish them in general, for any language (e.g. C), then discuss
Hack VM specifically next video.

Goal 1: Program flow. On function call, we should jump to the start of
the function. On function return, we should jump back.

Goal 2: Memory allocation. On function call, we should allocate memory
for the new local and argument variables. On function return, we should
free that memory.

Goal 3: Program state. On function call, we should set aside all existing
local/argument variables and most register values, and replace them with
new ones. On function return, we should pick them back up unchanged.

Goal 4: Static variables should be unaffected by function calls and returns.

John Lapinskas Frames 2 / 10



A checklist to implement functions

We have four sub-goals for functions in Hack VM. We’ll first discuss how
to accomplish them in general, for any language (e.g. C), then discuss
Hack VM specifically next video.

Goal 1: Program flow. On function call, we should jump to the start of
the function. On function return, we should jump back.

Goal 2: Memory allocation. On function call, we should allocate memory
for the new local and argument variables. On function return, we should
free that memory.

Goal 3: Program state. On function call, we should set aside all existing
local/argument variables and most register values, and replace them with
new ones. On function return, we should pick them back up unchanged.

Goal 4: Static variables should be unaffected by function calls and returns.

John Lapinskas Frames 2 / 10



A checklist to implement functions

We have four sub-goals for functions in Hack VM. We’ll first discuss how
to accomplish them in general, for any language (e.g. C), then discuss
Hack VM specifically next video.

Goal 1: Program flow. On function call, we should jump to the start of
the function. On function return, we should jump back.

Goal 2: Memory allocation. On function call, we should allocate memory
for the new local and argument variables. On function return, we should
free that memory.

Goal 3: Program state. On function call, we should set aside all existing
local/argument variables and most register values, and replace them with
new ones. On function return, we should pick them back up unchanged.

Goal 4: Static variables should be unaffected by function calls and returns.

John Lapinskas Frames 2 / 10



The ubiquity of the stack

In any language and (almost) any architecture, the best way to achieve
these goals will use a stack.

In Hack, the stack doesn’t exist at the assembly level, only at the level of
the Hack VM. This is unusual! Both ARM and x86-64 have:

A register ESP which takes the role of the stack pointer SP.

push and pop assembly instructions to manipulate the stack.

call, ret, enter and leave assembly instructions to do most of
what we discuss in this video.

So while these operations are slow and cumbersome in Hack assembly,
with a simple push local 5 operation translating to 10+ instructions,
they are very fast in modern CPUs.

(MIPS doesn’t have native push and pop commands, but does have jal
and jr instructions that remove a lot of the burden of function calls.)

John Lapinskas Frames 3 / 10



Goal 1: Program flow

Goal 1: Program flow. On function call, we should jump to the start of
the function. On function return, we should jump back.

We may assume we have access to a stack.

On call: Push the return address onto the stack, then jump to the start of
the function code.

On return: Pop the return address from the stack, then jump to it.

How do we know what addresses to jump to?

We can leave it to the assembler! Labels are a part of any assembly
language, not just Hack, and they already solve this problem.

John Lapinskas Frames 4 / 10



Goal 1: Program flow

Goal 1: Program flow. On function call, we should jump to the start of
the function. On function return, we should jump back.

We may assume we have access to a stack.

On call: Push the return address onto the stack, then jump to the start of
the function code.

On return: Pop the return address from the stack, then jump to it.

How do we know what addresses to jump to?

We can leave it to the assembler! Labels are a part of any assembly
language, not just Hack, and they already solve this problem.

John Lapinskas Frames 4 / 10



Goal 1: Program flow

Goal 1: Program flow. On function call, we should jump to the start of
the function. On function return, we should jump back.

We may assume we have access to a stack.

On call: Push the return address onto the stack, then jump to the start of
the function code.

On return: Pop the return address from the stack, then jump to it.

How do we know what addresses to jump to?

We can leave it to the assembler! Labels are a part of any assembly
language, not just Hack, and they already solve this problem.

John Lapinskas Frames 4 / 10



Goal 1: Program flow

Goal 1: Program flow. On function call, we should jump to the start of
the function. On function return, we should jump back.

We may assume we have access to a stack.

On call: Push the return address onto the stack, then jump to the start of
the function code.

On return: Pop the return address from the stack, then jump to it.

How do we know what addresses to jump to?

We can leave it to the assembler! Labels are a part of any assembly
language, not just Hack, and they already solve this problem.

John Lapinskas Frames 4 / 10



Goal 1: Program flow

Goal 1: Program flow. On function call, we should jump to the start of
the function. On function return, we should jump back.

We may assume we have access to a stack.

On call: Push the return address onto the stack, then jump to the start of
the function code.

On return: Pop the return address from the stack, then jump to it.

How do we know what addresses to jump to?

We can leave it to the assembler! Labels are a part of any assembly
language, not just Hack, and they already solve this problem.

John Lapinskas Frames 4 / 10



Goal 1: Program flow example

C code Assembly code (sketch)

// Start of main code

@label0

[Push address (label0) onto stack]

[Jump to (foo)]

(label0)

// Halt

(foo)

@label1

[Push address (label1) onto stack]

[Jump to (bar)]

(label1)

// More code here

[Pop return address off stack]

[Jump to return address]

(bar)

@label2

[Push address (label2) onto stack]

[Jump to (baz)]

(label2)

// More code here

[Pop return address off stack]

[Jump to return address]

(baz)

// More code here

[Pop return address off stack]

[Jump to return address]

Stack

(label0)

(label1)

(label2)

John Lapinskas Frames 5 / 10



Goal 1: Program flow example

C code Assembly code (sketch)

// Start of main code

@label0

[Push address (label0) onto stack]

[Jump to (foo)]

(label0)

// Halt

(foo)

@label1

[Push address (label1) onto stack]

[Jump to (bar)]

(label1)

// More code here

[Pop return address off stack]

[Jump to return address]

(bar)

@label2

[Push address (label2) onto stack]

[Jump to (baz)]

(label2)

// More code here

[Pop return address off stack]

[Jump to return address]

(baz)

// More code here

[Pop return address off stack]

[Jump to return address]

Stack

(label0)

(label1)

(label2)

John Lapinskas Frames 5 / 10



Goal 1: Program flow example

C code Assembly code (sketch)

// Start of main code

@label0

[Push address (label0) onto stack]

[Jump to (foo)]

(label0)

// Halt

(foo)

@label1

[Push address (label1) onto stack]

[Jump to (bar)]

(label1)

// More code here

[Pop return address off stack]

[Jump to return address]

(bar)

@label2

[Push address (label2) onto stack]

[Jump to (baz)]

(label2)

// More code here

[Pop return address off stack]

[Jump to return address]

(baz)

// More code here

[Pop return address off stack]

[Jump to return address]

Stack

(label0)

(label1)

(label2)

John Lapinskas Frames 5 / 10



Goal 1: Program flow example

C code Assembly code (sketch)

// Start of main code

@label0

[Push address (label0) onto stack]

[Jump to (foo)]

(label0)

// Halt

(foo)

@label1

[Push address (label1) onto stack]

[Jump to (bar)]

(label1)

// More code here

[Pop return address off stack]

[Jump to return address]

(bar)

@label2

[Push address (label2) onto stack]

[Jump to (baz)]

(label2)

// More code here

[Pop return address off stack]

[Jump to return address]

(baz)

// More code here

[Pop return address off stack]

[Jump to return address]

Stack

(label0)

(label1)

(label2)

John Lapinskas Frames 5 / 10



Goal 1: Program flow example

C code Assembly code (sketch)

// Start of main code

@label0

[Push address (label0) onto stack]

[Jump to (foo)]

(label0)

// Halt

(foo)

@label1

[Push address (label1) onto stack]

[Jump to (bar)]

(label1)

// More code here

[Pop return address off stack]

[Jump to return address]

(bar)

@label2

[Push address (label2) onto stack]

[Jump to (baz)]

(label2)

// More code here

[Pop return address off stack]

[Jump to return address]

(baz)

// More code here

[Pop return address off stack]

[Jump to return address]

Stack

(label0)

(label1)

(label2)

John Lapinskas Frames 5 / 10



Goal 1: Program flow example

C code Assembly code (sketch)

// Start of main code

@label0

[Push address (label0) onto stack]

[Jump to (foo)]

(label0)

// Halt

(foo)

@label1

[Push address (label1) onto stack]

[Jump to (bar)]

(label1)

// More code here

[Pop return address off stack]

[Jump to return address]

(bar)

@label2

[Push address (label2) onto stack]

[Jump to (baz)]

(label2)

// More code here

[Pop return address off stack]

[Jump to return address]

(baz)

// More code here

[Pop return address off stack]

[Jump to return address]

Stack

(label0)

(label1)

(label2)

John Lapinskas Frames 5 / 10



Goal 1: Program flow example

C code Assembly code (sketch)

// Start of main code

@label0

[Push address (label0) onto stack]

[Jump to (foo)]

(label0)

// Halt

(foo)

@label1

[Push address (label1) onto stack]

[Jump to (bar)]

(label1)

// More code here

[Pop return address off stack]

[Jump to return address]

(bar)

@label2

[Push address (label2) onto stack]

[Jump to (baz)]

(label2)

// More code here

[Pop return address off stack]

[Jump to return address]

(baz)

// More code here

[Pop return address off stack]

[Jump to return address]

Stack

(label0)

(label1)

(label2)

John Lapinskas Frames 5 / 10



Goal 1: Program flow example

C code Assembly code (sketch)

// Start of main code

@label0

[Push address (label0) onto stack]

[Jump to (foo)]

(label0)

// Halt

(foo)

@label1

[Push address (label1) onto stack]

[Jump to (bar)]

(label1)

// More code here

[Pop return address off stack]

[Jump to return address]

(bar)

@label2

[Push address (label2) onto stack]

[Jump to (baz)]

(label2)

// More code here

[Pop return address off stack]

[Jump to return address]

(baz)

// More code here

[Pop return address off stack]

[Jump to return address]

Stack

(label0)

(label1)

(label2)

John Lapinskas Frames 5 / 10



Goal 1: Program flow example

C code Assembly code (sketch)

// Start of main code

@label0

[Push address (label0) onto stack]

[Jump to (foo)]

(label0)

// Halt

(foo)

@label1

[Push address (label1) onto stack]

[Jump to (bar)]

(label1)

// More code here

[Pop return address off stack]

[Jump to return address]

(bar)

@label2

[Push address (label2) onto stack]

[Jump to (baz)]

(label2)

// More code here

[Pop return address off stack]

[Jump to return address]

(baz)

// More code here

[Pop return address off stack]

[Jump to return address]

Stack

(label0)

(label1)

(label2)

John Lapinskas Frames 5 / 10



Goal 1: Program flow example

C code Assembly code (sketch)

// Start of main code

@label0

[Push address (label0) onto stack]

[Jump to (foo)]

(label0)

// Halt

(foo)

@label1

[Push address (label1) onto stack]

[Jump to (bar)]

(label1)

// More code here

[Pop return address off stack]

[Jump to return address]

(bar)

@label2

[Push address (label2) onto stack]

[Jump to (baz)]

(label2)

// More code here

[Pop return address off stack]

[Jump to return address]

(baz)

// More code here

[Pop return address off stack]

[Jump to return address]

Stack

(label0)

(label1)

(label2)

John Lapinskas Frames 5 / 10



Goal 2: Memory allocation

Goal 2: Memory allocation. On function call, we should allocate memory for the new
local and argument variables. On function return, we should free that memory.

In C, the size of every single variable can be worked out at compile time.

Things that look like their length is decided at run-time (like strings and arrays)
are really pointers, which are always 64 bits long.

The memory they point to either has size fixed at compile time (e.g. char *out

= "Hello world!"; or int myArray[100];) or assigned explicitly by the
programmer with malloc and free.

A C compiler that creates a symbol table for the local variables in a function
during semantic analysis (i.e. after parsing) will therefore know in advance exactly
how much space to allocate every time the function is called. Ditto arguments.

So the compiler needs to:

Find space for a known number of local/argument variables of known size
each time the function is called.

Implement malloc and free. This memory is then independent of function
calls, so no further action is needed. (See later video!)

John Lapinskas Frames 6 / 10



Goal 2: Memory allocation

Goal 2: Memory allocation. On function call, we should allocate memory for the new
local and argument variables. On function return, we should free that memory.

In C, the size of every single variable can be worked out at compile time.

Things that look like their length is decided at run-time (like strings and arrays)
are really pointers, which are always 64 bits long.

The memory they point to either has size fixed at compile time (e.g. char *out

= "Hello world!"; or int myArray[100];) or assigned explicitly by the
programmer with malloc and free.

A C compiler that creates a symbol table for the local variables in a function
during semantic analysis (i.e. after parsing) will therefore know in advance exactly
how much space to allocate every time the function is called. Ditto arguments.

So the compiler needs to:

Find space for a known number of local/argument variables of known size
each time the function is called.

Implement malloc and free. This memory is then independent of function
calls, so no further action is needed. (See later video!)

John Lapinskas Frames 6 / 10



Goal 2: Memory allocation

Goal 2: Memory allocation. On function call, we should allocate memory for the new
local and argument variables. On function return, we should free that memory.

In C, the size of every single variable can be worked out at compile time.

Things that look like their length is decided at run-time (like strings and arrays)
are really pointers, which are always 64 bits long.

The memory they point to either has size fixed at compile time (e.g. char *out

= "Hello world!"; or int myArray[100];) or assigned explicitly by the
programmer with malloc and free.

A C compiler that creates a symbol table for the local variables in a function
during semantic analysis (i.e. after parsing) will therefore know in advance exactly
how much space to allocate every time the function is called. Ditto arguments.

So the compiler needs to:

Find space for a known number of local/argument variables of known size
each time the function is called.

Implement malloc and free. This memory is then independent of function
calls, so no further action is needed. (See later video!)

John Lapinskas Frames 6 / 10



Combining goals 2 and 3

Goal 2: Memory allocation. On function call, we should allocate memory for the new
local and argument variables. On function return, we should free that memory.

We know when generating assembly code exactly what variables we need to allocate.

Goal 3: Program state. On function call, we should set aside all existing local/argument
variables and most register values, and replace them with new ones. On function return,
we should pick them back up unchanged.

We can use the stack! Let’s say a call to a function f will need 10 words of local
variables, 7 words of argument variables, and 5 words of state (including relevant
registers and the return address). We can have these variables stored in a symbol table.

John Lapinskas Frames 7 / 10



Combining goals 2 and 3

Goal 2: Memory allocation. On function call, we should allocate memory for the new
local and argument variables. On function return, we should free that memory.

We know when generating assembly code exactly what variables we need to allocate.

Goal 3: Program state. On function call, we should set aside all existing local/argument
variables and most register values, and replace them with new ones. On function return,
we should pick them back up unchanged.

We can use the stack! Let’s say a call to a function f will need 10 words of local
variables, 7 words of argument variables, and 5 words of state (including relevant
registers and the return address). We can have these variables stored in a symbol table.

John Lapinskas Frames 7 / 10



Combining goals 2 and 3

Goal 2: Memory allocation. On function call, we should allocate memory for the new
local and argument variables. On function return, we should free that memory.

We know when generating assembly code exactly what variables we need to allocate.

Goal 3: Program state. On function call, we should set aside all existing local/argument
variables and most register values, and replace them with new ones. On function return,
we should pick them back up unchanged.

We can use the stack! Let’s say a call to a function f will need 10 words of local
variables, 7 words of argument variables, and 5 words of state (including relevant
registers and the return address). We can have these variables stored in a symbol table.

On function call:

Store the current stack pointer in a register/memory as OSP (Old Stack Pointer).

Add 10 to the stack pointer SP to leave room for local variables.

Push our program state and arguments onto the stack (adding 12 to SP).

Jump to the function label.

John Lapinskas Frames 7 / 10



Combining goals 2 and 3

Goal 2: Memory allocation. On function call, we should allocate memory for the new
local and argument variables. On function return, we should free that memory.

We know when generating assembly code exactly what variables we need to allocate.

Goal 3: Program state. On function call, we should set aside all existing local/argument
variables and most register values, and replace them with new ones. On function return,
we should pick them back up unchanged.

We can use the stack! Let’s say a call to a function f will need 10 words of local
variables, 7 words of argument variables, and 5 words of state (including relevant
registers and the return address). We can have these variables stored in a symbol table.

During function execution:

Say each variable takes one word of storage, and we stored arguments at the
bottom, then local variables, then program state. (This doesn’t really matter.)

References to the i ’th argument variable become references to RAM[OSP+ i ].

Reference to the i ’th local variable become references to RAM[OSP+ 7 + i ].

We can use symbol tables to store the offset for each variable (which also handles
variables of sizes other than one word).

John Lapinskas Frames 7 / 10



Combining goals 2 and 3

Goal 2: Memory allocation. On function call, we should allocate memory for the new
local and argument variables. On function return, we should free that memory.

We know when generating assembly code exactly what variables we need to allocate.

Goal 3: Program state. On function call, we should set aside all existing local/argument
variables and most register values, and replace them with new ones. On function return,
we should pick them back up unchanged.

We can use the stack! Let’s say a call to a function f will need 10 words of local
variables, 7 words of argument variables, and 5 words of state (including relevant
registers and the return address). We can have these variables stored in a symbol table.

On function return:

Optionally, store a return value.

Reset our stack pointer SP back to OSP, effectively freeing the memory we used for
the old local variables, arguments, and program state.

Copy our old program state back into registers.

Jump to the return address (from the stack).

Optionally, do something with the return value.

John Lapinskas Frames 7 / 10



Combining goals 2 and 3

Goal 2: Memory allocation. On function call, we should allocate memory for the new
local and argument variables. On function return, we should free that memory.

We know when generating assembly code exactly what variables we need to allocate.

Goal 3: Program state. On function call, we should set aside all existing local/argument
variables and most register values, and replace them with new ones. On function return,
we should pick them back up unchanged.

We can use the stack! Let’s say a call to a function f will need 10 words of local
variables, 7 words of argument variables, and 5 words of state (including relevant
registers and the return address). We can have these variables stored in a symbol table.

In the example on the next slide, we assume the stack starts at OSP, that all variables are
one word long, and that the program state is 10 words long.

We also completely ignore what happens when we “call” or “return from” main.

Finally, note that this is a possible way of implementing function calls from C. The actual
implementation would set up the stack slightly differently for optimisation reasons (or
maybe optimise out the function calls altogether).

John Lapinskas Frames 7 / 10



Extended example

C code Symbol tables
(stored by compiler)

main

Name Type Offset
x Local, int 0
y Local, int 1
z Local, int 2

threemin

Name Type Offset
a Argument, int 0
b Argument, int 1
c Argument, int 2
x Local, int 3
y Local, int 4
z Local, int 5

min

Name Type Offset
a Argument, int 0
b Argument, int 1

Stack (stored
by program)

x

y
z

5
-8

a
b

c

x

y
z

Old state

5
-8
42

-8
5
-8

a
b

Old state

OSP = 256
SP = 259

John Lapinskas Frames 8 / 10



Extended example

C code Symbol tables
(stored by compiler)

main

Name Type Offset
x Local, int 0
y Local, int 1
z Local, int 2

threemin

Name Type Offset
a Argument, int 0
b Argument, int 1
c Argument, int 2
x Local, int 3
y Local, int 4
z Local, int 5

min

Name Type Offset
a Argument, int 0
b Argument, int 1

Stack (stored
by program)

x

y
z

42

5
-8

a
b

c

x

y
z

Old state

5
-8
42

-8
5
-8

a
b

Old state

OSP = 256
SP = 259

John Lapinskas Frames 8 / 10



Extended example

C code Symbol tables
(stored by compiler)

main

Name Type Offset
x Local, int 0
y Local, int 1
z Local, int 2

threemin

Name Type Offset
a Argument, int 0
b Argument, int 1
c Argument, int 2
x Local, int 3
y Local, int 4
z Local, int 5

min

Name Type Offset
a Argument, int 0
b Argument, int 1

Stack (stored
by program)

x

y
z

42
5

-8

a
b

c

x

y
z

Old state

5
-8
42

-8
5
-8

a
b

Old state

OSP = 256
SP = 259

John Lapinskas Frames 8 / 10



Extended example

C code Symbol tables
(stored by compiler)

main

Name Type Offset
x Local, int 0
y Local, int 1
z Local, int 2

threemin

Name Type Offset
a Argument, int 0
b Argument, int 1
c Argument, int 2
x Local, int 3
y Local, int 4
z Local, int 5

min

Name Type Offset
a Argument, int 0
b Argument, int 1

Stack (stored
by program)

x

y
z

42
5
-8

a
b

c

x

y
z

Old state

5
-8
42

-8
5
-8

a
b

Old state

OSP = 256
SP = 259

John Lapinskas Frames 8 / 10



Extended example

C code Symbol tables
(stored by compiler)

main

Name Type Offset
x Local, int 0
y Local, int 1
z Local, int 2

threemin

Name Type Offset
a Argument, int 0
b Argument, int 1
c Argument, int 2
x Local, int 3
y Local, int 4
z Local, int 5

min

Name Type Offset
a Argument, int 0
b Argument, int 1

Stack (stored
by program)

x

y
z

42
5
-8

a
b

c

x

y
z

Old state

5
-8
42

-8
5
-8

a
b

Old state

OSP = 259
SP = 275

John Lapinskas Frames 8 / 10



Extended example

C code Symbol tables
(stored by compiler)

main

Name Type Offset
x Local, int 0
y Local, int 1
z Local, int 2

threemin

Name Type Offset
a Argument, int 0
b Argument, int 1
c Argument, int 2
x Local, int 3
y Local, int 4
z Local, int 5

min

Name Type Offset
a Argument, int 0
b Argument, int 1

Stack (stored
by program)

x

y
z

42
5
-8

a
b

c

x

y
z

Old state

5
-8
42

-8
5
-8

a 5
-8b

Old state

OSP = 275
SP = 287

John Lapinskas Frames 8 / 10



Extended example

C code Symbol tables
(stored by compiler)

main

Name Type Offset
x Local, int 0
y Local, int 1
z Local, int 2

threemin

Name Type Offset
a Argument, int 0
b Argument, int 1
c Argument, int 2
x Local, int 3
y Local, int 4
z Local, int 5

min

Name Type Offset
a Argument, int 0
b Argument, int 1

Stack (stored
by program)

x

y
z

42
5
-8

a
b

c

x

y
z

Old state

5
-8
42
-8

5
-8

a
b

Old state

OSP = 259
SP = 275

John Lapinskas Frames 8 / 10



Extended example

C code Symbol tables
(stored by compiler)

main

Name Type Offset
x Local, int 0
y Local, int 1
z Local, int 2

threemin

Name Type Offset
a Argument, int 0
b Argument, int 1
c Argument, int 2
x Local, int 3
y Local, int 4
z Local, int 5

min

Name Type Offset
a Argument, int 0
b Argument, int 1

Stack (stored
by program)

x

y
z

42
5
-8

a
b

c

x

y
z

Old state

5
-8
42
-8

5
-8

a 5
42b

Old state

OSP = 275
SP = 287

John Lapinskas Frames 8 / 10



Extended example

C code Symbol tables
(stored by compiler)

main

Name Type Offset
x Local, int 0
y Local, int 1
z Local, int 2

threemin

Name Type Offset
a Argument, int 0
b Argument, int 1
c Argument, int 2
x Local, int 3
y Local, int 4
z Local, int 5

min

Name Type Offset
a Argument, int 0
b Argument, int 1

Stack (stored
by program)

x

y
z

42
5
-8

a
b

c

x

y
z

Old state

5
-8
42
-8
5

-8

a
b

Old state

OSP = 259
SP = 275

John Lapinskas Frames 8 / 10



Extended example

C code Symbol tables
(stored by compiler)

main

Name Type Offset
x Local, int 0
y Local, int 1
z Local, int 2

threemin

Name Type Offset
a Argument, int 0
b Argument, int 1
c Argument, int 2
x Local, int 3
y Local, int 4
z Local, int 5

min

Name Type Offset
a Argument, int 0
b Argument, int 1

Stack (stored
by program)

x

y
z

42
5
-8

a
b

c

x

y
z

Old state

5
-8
42
-8
5

-8

a -8
42b

Old state

OSP = 275
SP = 287

John Lapinskas Frames 8 / 10



Extended example

C code Symbol tables
(stored by compiler)

main

Name Type Offset
x Local, int 0
y Local, int 1
z Local, int 2

threemin

Name Type Offset
a Argument, int 0
b Argument, int 1
c Argument, int 2
x Local, int 3
y Local, int 4
z Local, int 5

min

Name Type Offset
a Argument, int 0
b Argument, int 1

Stack (stored
by program)

x

y
z

42
5
-8

a
b

c

x

y
z

Old state

5
-8
42
-8
5
-8

a
b

Old state

OSP = 259
SP = 275

John Lapinskas Frames 8 / 10



Extended example

C code Symbol tables
(stored by compiler)

main

Name Type Offset
x Local, int 0
y Local, int 1
z Local, int 2

threemin

Name Type Offset
a Argument, int 0
b Argument, int 1
c Argument, int 2
x Local, int 3
y Local, int 4
z Local, int 5

min

Name Type Offset
a Argument, int 0
b Argument, int 1

Stack (stored
by program)

x

y
z

-8
5
-8

a
b

c

x

y
z

Old state

5
-8
42
-8
5

-8

a
b

Old state

OSP = 256
SP = 259

John Lapinskas Frames 8 / 10



Terminology

We call the parts of the program state that need to be pushed onto
the stack (e.g. the return address, the old OSP value, old register
values) the call frame or just frame of the calling function.

Last slide, we just called this “Old state”.

The program can still use the very top of the stack for working
storage for arithmetic operations while inside a function.

We call this sub-stack the working stack, and the entire stack
(including all past call frames) the global stack.

During a function call, the working stack will be preserved along with
the rest of the old state. (It’s not part of the call frame, though.)

Memory allocated by malloc is often said to be allocated on the
heap, to distinguish it from memory allocated on the stack.

Surprisingly, there’s no relation at all to a heap data structure!
It’s just a phrase with no deeper meaning.

John Lapinskas Frames 9 / 10



Terminology

We call the parts of the program state that need to be pushed onto
the stack (e.g. the return address, the old OSP value, old register
values) the call frame or just frame of the calling function.

Last slide, we just called this “Old state”.

The program can still use the very top of the stack for working
storage for arithmetic operations while inside a function.

We call this sub-stack the working stack, and the entire stack
(including all past call frames) the global stack.

During a function call, the working stack will be preserved along with
the rest of the old state. (It’s not part of the call frame, though.)

Memory allocated by malloc is often said to be allocated on the
heap, to distinguish it from memory allocated on the stack.

Surprisingly, there’s no relation at all to a heap data structure!
It’s just a phrase with no deeper meaning.

John Lapinskas Frames 9 / 10



Terminology

We call the parts of the program state that need to be pushed onto
the stack (e.g. the return address, the old OSP value, old register
values) the call frame or just frame of the calling function.

Last slide, we just called this “Old state”.

The program can still use the very top of the stack for working
storage for arithmetic operations while inside a function.

We call this sub-stack the working stack, and the entire stack
(including all past call frames) the global stack.

During a function call, the working stack will be preserved along with
the rest of the old state. (It’s not part of the call frame, though.)

Memory allocated by malloc is often said to be allocated on the
heap, to distinguish it from memory allocated on the stack.

Surprisingly, there’s no relation at all to a heap data structure!
It’s just a phrase with no deeper meaning.

John Lapinskas Frames 9 / 10



Goal 4: Static variables

Goal 4: Static variables should be unaffected by function calls and returns.

This is easy — we just assign each static variable its own area of memory
separate from the stack (in Hack VM this is the static segment).

We have a symbol table mapping each variable name to its memory.

Last, we refrain from messing with it in the function call/return process.

Likewise, we don’t have to do anything special to account for any working
storage on the stack used for e.g. arithmetic operations — this will
naturally be preserved on function call and restored on return.

Non-C languages often blur the line between stack and heap on the
surface, e.g. allowing the programmer to define variable-length arrays or
freeing memory automatically.

But under the hood, they generally work like C — they store some
variables on the stack and others on the heap, and call analogues of
malloc and free to manage heap memory.

John Lapinskas Frames 10 / 10



Goal 4: Static variables

Goal 4: Static variables should be unaffected by function calls and returns.

This is easy — we just assign each static variable its own area of memory
separate from the stack (in Hack VM this is the static segment).

We have a symbol table mapping each variable name to its memory.

Last, we refrain from messing with it in the function call/return process.

Likewise, we don’t have to do anything special to account for any working
storage on the stack used for e.g. arithmetic operations — this will
naturally be preserved on function call and restored on return.

Non-C languages often blur the line between stack and heap on the
surface, e.g. allowing the programmer to define variable-length arrays or
freeing memory automatically.

But under the hood, they generally work like C — they store some
variables on the stack and others on the heap, and call analogues of
malloc and free to manage heap memory.

John Lapinskas Frames 10 / 10



Goal 4: Static variables

Goal 4: Static variables should be unaffected by function calls and returns.

This is easy — we just assign each static variable its own area of memory
separate from the stack (in Hack VM this is the static segment).

We have a symbol table mapping each variable name to its memory.

Last, we refrain from messing with it in the function call/return process.

Likewise, we don’t have to do anything special to account for any working
storage on the stack used for e.g. arithmetic operations — this will
naturally be preserved on function call and restored on return.

Non-C languages often blur the line between stack and heap on the
surface, e.g. allowing the programmer to define variable-length arrays or
freeing memory automatically.

But under the hood, they generally work like C — they store some
variables on the stack and others on the heap, and call analogues of
malloc and free to manage heap memory.

John Lapinskas Frames 10 / 10



Goal 4: Static variables

Goal 4: Static variables should be unaffected by function calls and returns.

This is easy — we just assign each static variable its own area of memory
separate from the stack (in Hack VM this is the static segment).

We have a symbol table mapping each variable name to its memory.

Last, we refrain from messing with it in the function call/return process.

Likewise, we don’t have to do anything special to account for any working
storage on the stack used for e.g. arithmetic operations — this will
naturally be preserved on function call and restored on return.

Non-C languages often blur the line between stack and heap on the
surface, e.g. allowing the programmer to define variable-length arrays or
freeing memory automatically.

But under the hood, they generally work like C — they store some
variables on the stack and others on the heap, and call analogues of
malloc and free to manage heap memory.

John Lapinskas Frames 10 / 10


