
Functions in Hack VM: Syntax and implementation

John Lapinskas, University of Bristol

John Lapinskas Functions in Hack VM 1/ 7



Function syntax

Last video, we relied quite heavily on building symbol tables during the
semantic analysis stage of compilation.

The Hack VM syntax is designed to completely avoid the need for them!

The syntax to define a function is function name x, where name is
the function’s name and x is the size of the function’s local segment
(generally the number of local variables used).

Rather than using e.g. {}s or indentation, the function definition ends
with either the next function command or the EOF. (So any code
to be executed outside functions must be at the top of the file.)

The syntax to call a function is call name x, where name is the
function’s name and x is the number of arguments to use. This pops
the top x values of the stack (for use as arguments), calls the
function, and pushes the returned value onto the stack.

The syntax to return from a function is return, which returns the
top value of the stack.

John Lapinskas Functions in Hack VM 2/ 7



Function syntax

Last video, we relied quite heavily on building symbol tables during the
semantic analysis stage of compilation.

The Hack VM syntax is designed to completely avoid the need for them!

The syntax to define a function is function name x, where name is
the function’s name and x is the size of the function’s local segment
(generally the number of local variables used).

Rather than using e.g. {}s or indentation, the function definition ends
with either the next function command or the EOF. (So any code
to be executed outside functions must be at the top of the file.)

The syntax to call a function is call name x, where name is the
function’s name and x is the number of arguments to use. This pops
the top x values of the stack (for use as arguments), calls the
function, and pushes the returned value onto the stack.

The syntax to return from a function is return, which returns the
top value of the stack.

John Lapinskas Functions in Hack VM 2/ 7



Function syntax

Last video, we relied quite heavily on building symbol tables during the
semantic analysis stage of compilation.

The Hack VM syntax is designed to completely avoid the need for them!

The syntax to define a function is function name x, where name is
the function’s name and x is the size of the function’s local segment
(generally the number of local variables used).

Rather than using e.g. {}s or indentation, the function definition ends
with either the next function command or the EOF. (So any code
to be executed outside functions must be at the top of the file.)

The syntax to call a function is call name x, where name is the
function’s name and x is the number of arguments to use. This pops
the top x values of the stack (for use as arguments), calls the
function, and pushes the returned value onto the stack.

The syntax to return from a function is return, which returns the
top value of the stack.

John Lapinskas Functions in Hack VM 2/ 7



Function syntax

Last video, we relied quite heavily on building symbol tables during the
semantic analysis stage of compilation.

The Hack VM syntax is designed to completely avoid the need for them!

The syntax to define a function is function name x, where name is
the function’s name and x is the size of the function’s local segment
(generally the number of local variables used).

Rather than using e.g. {}s or indentation, the function definition ends
with either the next function command or the EOF. (So any code
to be executed outside functions must be at the top of the file.)

The syntax to call a function is call name x, where name is the
function’s name and x is the number of arguments to use. This pops
the top x values of the stack (for use as arguments), calls the
function, and pushes the returned value onto the stack.

The syntax to return from a function is return, which returns the
top value of the stack.

John Lapinskas Functions in Hack VM 2/ 7



An example of function syntax in use

[See video for a demonstration with the VM simulator with sum.vm.]

John Lapinskas Functions in Hack VM 3/ 7



Implementing function calls

Say our VM translator sees the line call myFunc 2. On the
right is one possible stack in execution of the VM code, as an
example. The assembly code we generate must:

End with a label, say auto$57, which we push onto the
stack for the later return statement to jump to. This
mustn’t clash with any of our other labels in the final
assembly file. (Note there’s no need to update SP yet!
It will be easier to do that later.)

Push LCL, ARG, THIS and THAT onto the stack to
preserve their current values.

Set ARG to 2 values from the (old) top of the stack,
allocating the arguments as the argument segment for
the function call.

Set LCL to the new top of the stack, which will be the
start of the local segment for the function call. (The
function definition will contain the length of local.)

Jump to the function label (which we will generate from
the function definition elsewhere in the VM code).

Old call frames,
working stacks,
local/argument

segments

Working stack

[Argument #1]

[Argument #2]

SP

(auto$57)

Old LCL

Old ARG

Old THIS

Old THAT

New ARG

New LCL

John Lapinskas Functions in Hack VM 4/ 7



Implementing function calls

Say our VM translator sees the line call myFunc 2. On the
right is one possible stack in execution of the VM code, as an
example. The assembly code we generate must:

End with a label, say auto$57, which we push onto the
stack for the later return statement to jump to. This
mustn’t clash with any of our other labels in the final
assembly file. (Note there’s no need to update SP yet!
It will be easier to do that later.)

Push LCL, ARG, THIS and THAT onto the stack to
preserve their current values.

Set ARG to 2 values from the (old) top of the stack,
allocating the arguments as the argument segment for
the function call.

Set LCL to the new top of the stack, which will be the
start of the local segment for the function call. (The
function definition will contain the length of local.)

Jump to the function label (which we will generate from
the function definition elsewhere in the VM code).

Old call frames,
working stacks,
local/argument

segments

Working stack

[Argument #1]

[Argument #2]

SP

(auto$57)

Old LCL

Old ARG

Old THIS

Old THAT

New ARG

New LCL

John Lapinskas Functions in Hack VM 4/ 7



Implementing function calls

Say our VM translator sees the line call myFunc 2. On the
right is one possible stack in execution of the VM code, as an
example. The assembly code we generate must:

End with a label, say auto$57, which we push onto the
stack for the later return statement to jump to. This
mustn’t clash with any of our other labels in the final
assembly file. (Note there’s no need to update SP yet!
It will be easier to do that later.)

Push LCL, ARG, THIS and THAT onto the stack to
preserve their current values.

Set ARG to 2 values from the (old) top of the stack,
allocating the arguments as the argument segment for
the function call.

Set LCL to the new top of the stack, which will be the
start of the local segment for the function call. (The
function definition will contain the length of local.)

Jump to the function label (which we will generate from
the function definition elsewhere in the VM code).

Old call frames,
working stacks,
local/argument

segments

Working stack

[Argument #1]

[Argument #2]

SP

(auto$57)

Old LCL

Old ARG

Old THIS

Old THAT

New ARG

New LCL

John Lapinskas Functions in Hack VM 4/ 7



Implementing function calls

Say our VM translator sees the line call myFunc 2. On the
right is one possible stack in execution of the VM code, as an
example. The assembly code we generate must:

End with a label, say auto$57, which we push onto the
stack for the later return statement to jump to. This
mustn’t clash with any of our other labels in the final
assembly file. (Note there’s no need to update SP yet!
It will be easier to do that later.)

Push LCL, ARG, THIS and THAT onto the stack to
preserve their current values.

Set ARG to 2 values from the (old) top of the stack,
allocating the arguments as the argument segment for
the function call.

Set LCL to the new top of the stack, which will be the
start of the local segment for the function call. (The
function definition will contain the length of local.)

Jump to the function label (which we will generate from
the function definition elsewhere in the VM code).

Old call frames,
working stacks,
local/argument

segments

Working stack

[Argument #1]

[Argument #2]

SP

(auto$57)

Old LCL

Old ARG

Old THIS

Old THAT

New ARG

New LCL

John Lapinskas Functions in Hack VM 4/ 7



Implementing function calls

Say our VM translator sees the line call myFunc 2. On the
right is one possible stack in execution of the VM code, as an
example. The assembly code we generate must:

End with a label, say auto$57, which we push onto the
stack for the later return statement to jump to. This
mustn’t clash with any of our other labels in the final
assembly file. (Note there’s no need to update SP yet!
It will be easier to do that later.)

Push LCL, ARG, THIS and THAT onto the stack to
preserve their current values.

Set ARG to 2 values from the (old) top of the stack,
allocating the arguments as the argument segment for
the function call.

Set LCL to the new top of the stack, which will be the
start of the local segment for the function call. (The
function definition will contain the length of local.)

Jump to the function label (which we will generate from
the function definition elsewhere in the VM code).

Old call frames,
working stacks,
local/argument

segments

Working stack

[Argument #1]

[Argument #2]

SP

(auto$57)

Old LCL

Old ARG

Old THIS

Old THAT

New ARG

New LCL

John Lapinskas Functions in Hack VM 4/ 7



Implementing function calls

Say our VM translator sees the line call myFunc 2. On the
right is one possible stack in execution of the VM code, as an
example. The assembly code we generate must:

End with a label, say auto$57, which we push onto the
stack for the later return statement to jump to. This
mustn’t clash with any of our other labels in the final
assembly file. (Note there’s no need to update SP yet!
It will be easier to do that later.)

Push LCL, ARG, THIS and THAT onto the stack to
preserve their current values.

Set ARG to 2 values from the (old) top of the stack,
allocating the arguments as the argument segment for
the function call.

Set LCL to the new top of the stack, which will be the
start of the local segment for the function call. (The
function definition will contain the length of local.)

Jump to the function label (which we will generate from
the function definition elsewhere in the VM code).

Old call frames,
working stacks,
local/argument

segments

Working stack

[Argument #1]

[Argument #2]

SP

(auto$57)

Old LCL

Old ARG

Old THIS

Old THAT

New ARG

New LCL

John Lapinskas Functions in Hack VM 4/ 7



Implementing function calls

Say our VM translator sees the line call myFunc 2. On the
right is one possible stack in execution of the VM code, as an
example. The assembly code we generate must:

End with a label, say auto$57, which we push onto the
stack for the later return statement to jump to. This
mustn’t clash with any of our other labels in the final
assembly file. (Note there’s no need to update SP yet!
It will be easier to do that later.)

Push LCL, ARG, THIS and THAT onto the stack to
preserve their current values.

Set ARG to 2 values from the (old) top of the stack,
allocating the arguments as the argument segment for
the function call.

Set LCL to the new top of the stack, which will be the
start of the local segment for the function call. (The
function definition will contain the length of local.)

Jump to the function label (which we will generate from
the function definition elsewhere in the VM code).

Old call frames,
working stacks,
local/argument

segments

Working stack

argument 0

argument 1

SP

(auto$57)

Old LCL

Old ARG

Old THIS

Old THAT

New ARG

New LCL

John Lapinskas Functions in Hack VM 4/ 7



Implementing function calls

Say our VM translator sees the line call myFunc 2. On the
right is one possible stack in execution of the VM code, as an
example. The assembly code we generate must:

End with a label, say auto$57, which we push onto the
stack for the later return statement to jump to. This
mustn’t clash with any of our other labels in the final
assembly file. (Note there’s no need to update SP yet!
It will be easier to do that later.)

Push LCL, ARG, THIS and THAT onto the stack to
preserve their current values.

Set ARG to 2 values from the (old) top of the stack,
allocating the arguments as the argument segment for
the function call.

Set LCL to the new top of the stack, which will be the
start of the local segment for the function call. (The
function definition will contain the length of local.)

Jump to the function label (which we will generate from
the function definition elsewhere in the VM code).

Old call frames,
working stacks,
local/argument

segments

Working stack

argument 0

argument 1

SP

(auto$57)

Old LCL

Old ARG

Old THIS

Old THAT

New ARG

New LCL

John Lapinskas Functions in Hack VM 4/ 7



Implementing function calls

Say our VM translator sees the line call myFunc 2. On the
right is one possible stack in execution of the VM code, as an
example. The assembly code we generate must:

End with a label, say auto$57, which we push onto the
stack for the later return statement to jump to. This
mustn’t clash with any of our other labels in the final
assembly file. (Note there’s no need to update SP yet!
It will be easier to do that later.)

Push LCL, ARG, THIS and THAT onto the stack to
preserve their current values.

Set ARG to 2 values from the (old) top of the stack,
allocating the arguments as the argument segment for
the function call.

Set LCL to the new top of the stack, which will be the
start of the local segment for the function call. (The
function definition will contain the length of local.)

Jump to the function label (which we will generate from
the function definition elsewhere in the VM code).

Old call frames,
working stacks,
local/argument

segments

Working stack

argument 0

argument 1

SP

(auto$57)

Old LCL

Old ARG

Old THIS

Old THAT

New ARG

New LCL

John Lapinskas Functions in Hack VM 4/ 7



Implementing function calls

Say our VM translator sees the line call myFunc 2. On the
right is one possible stack in execution of the VM code, as an
example. The assembly code we generate must:

End with a label, say auto$57, which we push onto the
stack for the later return statement to jump to. This
mustn’t clash with any of our other labels in the final
assembly file. (Note there’s no need to update SP yet!
It will be easier to do that later.)

Push LCL, ARG, THIS and THAT onto the stack to
preserve their current values.

Set ARG to 2 values from the (old) top of the stack,
allocating the arguments as the argument segment for
the function call.

Set LCL to the new top of the stack, which will be the
start of the local segment for the function call. (The
function definition will contain the length of local.)

Jump to the function label (which we will generate from
the function definition elsewhere in the VM code).

Old call frames,
working stacks,
local/argument

segments

Working stack

argument 0

argument 1

SP

(auto$57)

Old LCL

Old ARG

Old THIS

Old THAT

New ARG

New LCL

John Lapinskas Functions in Hack VM 4/ 7



Implementing function definitions

Say our VM translator sees the line function myFunc 3. On
the right we continue the example from last slide. The
assembly code we generate must:

Begin with a label, which we will jump to each time the
function is called. To avoid the need for a symbol table,
we should be able to get this label just from the function
name (so we can derive it from the call statement).

Set SP to LCL+ 3, getting the length of the local

segment from the function command.

Initialise local 0, local 1 and local 2 to zero.a

Continue into the first line of actual function code.

a
This is part of the Hack VM specification. They don’t explain their reasoning, but I

think it’s for security. Even in a single-process OS like DOS, different function calls may
belong to different processes, and it makes sense to prevent them from seeing each
other’s stale stack memory. They actually can’t already do this already via the this or
that segments — the VM emulator only allows this to be used for heap memory, and for
that to be used for heap memory, SCREEN, and KBD.

Old call frames,
working stacks,
local/argument

segments

argument 0

argument 1

SP

(auto$57)

Old LCL

Old ARG

Old THIS

Old THAT

ARG

LCL

local 0

local 1

local 2

John Lapinskas Functions in Hack VM 5/ 7



Implementing function definitions

Say our VM translator sees the line function myFunc 3. On
the right we continue the example from last slide. The
assembly code we generate must:

Begin with a label, which we will jump to each time the
function is called. To avoid the need for a symbol table,
we should be able to get this label just from the function
name (so we can derive it from the call statement).

Set SP to LCL+ 3, getting the length of the local

segment from the function command.

Initialise local 0, local 1 and local 2 to zero.a

Continue into the first line of actual function code.

a
This is part of the Hack VM specification. They don’t explain their reasoning, but I

think it’s for security. Even in a single-process OS like DOS, different function calls may
belong to different processes, and it makes sense to prevent them from seeing each
other’s stale stack memory. They actually can’t already do this already via the this or
that segments — the VM emulator only allows this to be used for heap memory, and for
that to be used for heap memory, SCREEN, and KBD.

Old call frames,
working stacks,
local/argument

segments

argument 0

argument 1

SP

(auto$57)

Old LCL

Old ARG

Old THIS

Old THAT

ARG

LCL

local 0

local 1

local 2

John Lapinskas Functions in Hack VM 5/ 7



Implementing function definitions

Say our VM translator sees the line function myFunc 3. On
the right we continue the example from last slide. The
assembly code we generate must:

Begin with a label, which we will jump to each time the
function is called. To avoid the need for a symbol table,
we should be able to get this label just from the function
name (so we can derive it from the call statement).

Set SP to LCL+ 3, getting the length of the local

segment from the function command.

Initialise local 0, local 1 and local 2 to zero.a

Continue into the first line of actual function code.

a
This is part of the Hack VM specification. They don’t explain their reasoning, but I

think it’s for security. Even in a single-process OS like DOS, different function calls may
belong to different processes, and it makes sense to prevent them from seeing each
other’s stale stack memory. They actually can’t already do this already via the this or
that segments — the VM emulator only allows this to be used for heap memory, and for
that to be used for heap memory, SCREEN, and KBD.

Old call frames,
working stacks,
local/argument

segments

argument 0

argument 1

SP

(auto$57)

Old LCL

Old ARG

Old THIS

Old THAT

ARG

LCL

local 0

local 1

local 2

John Lapinskas Functions in Hack VM 5/ 7



Implementing function definitions

Say our VM translator sees the line function myFunc 3. On
the right we continue the example from last slide. The
assembly code we generate must:

Begin with a label, which we will jump to each time the
function is called. To avoid the need for a symbol table,
we should be able to get this label just from the function
name (so we can derive it from the call statement).

Set SP to LCL+ 3, getting the length of the local

segment from the function command.

Initialise local 0, local 1 and local 2 to zero.a

Continue into the first line of actual function code.

a
This is part of the Hack VM specification. They don’t explain their reasoning, but I

think it’s for security. Even in a single-process OS like DOS, different function calls may
belong to different processes, and it makes sense to prevent them from seeing each
other’s stale stack memory. They actually can’t already do this already via the this or
that segments — the VM emulator only allows this to be used for heap memory, and for
that to be used for heap memory, SCREEN, and KBD.

Old call frames,
working stacks,
local/argument

segments

argument 0

argument 1

SP

(auto$57)

Old LCL

Old ARG

Old THIS

Old THAT

ARG

LCL

local 0

local 1

local 2

John Lapinskas Functions in Hack VM 5/ 7



Implementing function definitions

Say our VM translator sees the line function myFunc 3. On
the right we continue the example from last slide. The
assembly code we generate must:

Begin with a label, which we will jump to each time the
function is called. To avoid the need for a symbol table,
we should be able to get this label just from the function
name (so we can derive it from the call statement).

Set SP to LCL+ 3, getting the length of the local

segment from the function command.

Initialise local 0, local 1 and local 2 to zero.a

Continue into the first line of actual function code.

a
This is part of the Hack VM specification. They don’t explain their reasoning, but I

think it’s for security. Even in a single-process OS like DOS, different function calls may
belong to different processes, and it makes sense to prevent them from seeing each
other’s stale stack memory. They actually can’t already do this already via the this or
that segments — the VM emulator only allows this to be used for heap memory, and for
that to be used for heap memory, SCREEN, and KBD.

Old call frames,
working stacks,
local/argument

segments

argument 0

argument 1

SP

(auto$57)

Old LCL

Old ARG

Old THIS

Old THAT

ARG

LCL

local 0

local 1

local 2

John Lapinskas Functions in Hack VM 5/ 7



Implementing function definitions

Say our VM translator sees the line function myFunc 3. On
the right we continue the example from last slide. The
assembly code we generate must:

Begin with a label, which we will jump to each time the
function is called. To avoid the need for a symbol table,
we should be able to get this label just from the function
name (so we can derive it from the call statement).

Set SP to LCL+ 3, getting the length of the local

segment from the function command.

Initialise local 0, local 1 and local 2 to zero.a

Continue into the first line of actual function code.

a
This is part of the Hack VM specification. They don’t explain their reasoning, but I

think it’s for security. Even in a single-process OS like DOS, different function calls may
belong to different processes, and it makes sense to prevent them from seeing each
other’s stale stack memory. They actually can’t already do this already via the this or
that segments — the VM emulator only allows this to be used for heap memory, and for
that to be used for heap memory, SCREEN, and KBD.

Old call frames,
working stacks,
local/argument

segments

argument 0

argument 1

SP

(auto$57)

Old LCL

Old ARG

Old THIS

Old THAT

ARG

LCL

local 0

local 1

local 2

John Lapinskas Functions in Hack VM 5/ 7



Implementing function returns

Say our VM translator sees the line return. On the right we
continue the example from last slide. The assembly code we
generate must:

Temporarily store the return address (e.g. in R13).

Copy the return value to the our new working stack, i.e.
the current value of ARG.

Set SP to the top of our new working stack, i.e. ARG+1.

Restore the old values of THAT, THIS, ARG and LCL,
counting down from the current value of LCL to find
them on the stack.

Jump to the return value, effectively discarding
everything above SP.

Notice that our code didn’t ever need to know which function
we called or where we called it from!

Old stuff

argument 1
(auto$57)

Old LCL

Old ARG

Old THIS

Old THAT

local 0

local 1

local 2

Working stack

Return value

argument 0

SP

ARG

LCL

John Lapinskas Functions in Hack VM 6/ 7



Implementing function returns

Say our VM translator sees the line return. On the right we
continue the example from last slide. The assembly code we
generate must:

Temporarily store the return address (e.g. in R13).

Copy the return value to the our new working stack, i.e.
the current value of ARG.

Set SP to the top of our new working stack, i.e. ARG+1.

Restore the old values of THAT, THIS, ARG and LCL,
counting down from the current value of LCL to find
them on the stack.

Jump to the return value, effectively discarding
everything above SP.

Notice that our code didn’t ever need to know which function
we called or where we called it from!

Old stuff

argument 1
(auto$57)

Old LCL

Old ARG

Old THIS

Old THAT

local 0

local 1

local 2

Working stack

Return value

argument 0

SP

ARG

LCL

John Lapinskas Functions in Hack VM 6/ 7



Implementing function returns

Say our VM translator sees the line return. On the right we
continue the example from last slide. The assembly code we
generate must:

Temporarily store the return address (e.g. in R13).

Copy the return value to the our new working stack, i.e.
the current value of ARG.

Set SP to the top of our new working stack, i.e. ARG+1.

Restore the old values of THAT, THIS, ARG and LCL,
counting down from the current value of LCL to find
them on the stack.

Jump to the return value, effectively discarding
everything above SP.

Notice that our code didn’t ever need to know which function
we called or where we called it from!

Old stuff

argument 1
(auto$57)

Old LCL

Old ARG

Old THIS

Old THAT

local 0

local 1

local 2

Working stack

Return value

argument 0

SP

ARG

LCL

John Lapinskas Functions in Hack VM 6/ 7



Implementing function returns

Say our VM translator sees the line return. On the right we
continue the example from last slide. The assembly code we
generate must:

Temporarily store the return address (e.g. in R13).

Copy the return value to the our new working stack, i.e.
the current value of ARG.

Set SP to the top of our new working stack, i.e. ARG+1.

Restore the old values of THAT, THIS, ARG and LCL,
counting down from the current value of LCL to find
them on the stack.

Jump to the return value, effectively discarding
everything above SP.

Notice that our code didn’t ever need to know which function
we called or where we called it from!

Old stuff

argument 1
(auto$57)

Old LCL

Old ARG

Old THIS

Old THAT

local 0

local 1

local 2

Working stack

Return value

Return value

SP

ARG

LCL

John Lapinskas Functions in Hack VM 6/ 7



Implementing function returns

Say our VM translator sees the line return. On the right we
continue the example from last slide. The assembly code we
generate must:

Temporarily store the return address (e.g. in R13).

Copy the return value to the our new working stack, i.e.
the current value of ARG.

Set SP to the top of our new working stack, i.e. ARG+1.

Restore the old values of THAT, THIS, ARG and LCL,
counting down from the current value of LCL to find
them on the stack.

Jump to the return value, effectively discarding
everything above SP.

Notice that our code didn’t ever need to know which function
we called or where we called it from!

Old stuff

argument 1
(auto$57)

Old LCL

Old ARG

Old THIS

Old THAT

local 0

local 1

local 2

Working stack

Return value

Return value

SP

ARG

LCL

John Lapinskas Functions in Hack VM 6/ 7



Implementing function returns

Say our VM translator sees the line return. On the right we
continue the example from last slide. The assembly code we
generate must:

Temporarily store the return address (e.g. in R13).

Copy the return value to the our new working stack, i.e.
the current value of ARG.

Set SP to the top of our new working stack, i.e. ARG+1.

Restore the old values of THAT, THIS, ARG and LCL,
counting down from the current value of LCL to find
them on the stack.

Jump to the return value, effectively discarding
everything above SP.

Notice that our code didn’t ever need to know which function
we called or where we called it from!

Old stuff

argument 1
(auto$57)

Old LCL

Old ARG

Old THIS

Old THAT

local 0

local 1

local 2

Working stack

Return value

Return value

SP

ARG

LCL

John Lapinskas Functions in Hack VM 6/ 7



Implementing function returns

Say our VM translator sees the line return. On the right we
continue the example from last slide. The assembly code we
generate must:

Temporarily store the return address (e.g. in R13).

Copy the return value to the our new working stack, i.e.
the current value of ARG.

Set SP to the top of our new working stack, i.e. ARG+1.

Restore the old values of THAT, THIS, ARG and LCL,
counting down from the current value of LCL to find
them on the stack.

Jump to the return value, effectively discarding
everything above SP.

Notice that our code didn’t ever need to know which function
we called or where we called it from!

Old stuff

argument 1
(auto$57)

Old LCL

Old ARG

Old THIS

Old THAT

local 0

local 1

local 2

Working stack

Return value

Return value

SP

ARG

LCL

John Lapinskas Functions in Hack VM 6/ 7



Implementing function returns

Say our VM translator sees the line return. On the right we
continue the example from last slide. The assembly code we
generate must:

Temporarily store the return address (e.g. in R13).

Copy the return value to the our new working stack, i.e.
the current value of ARG.

Set SP to the top of our new working stack, i.e. ARG+1.

Restore the old values of THAT, THIS, ARG and LCL,
counting down from the current value of LCL to find
them on the stack.

Jump to the return value, effectively discarding
everything above SP.

Notice that our code didn’t ever need to know which function
we called or where we called it from!

Old stuff

argument 1
(auto$57)

Old LCL

Old ARG

Old THIS

Old THAT

local 0

local 1

local 2

Working stack

Return value

Return value

SP

ARG

LCL

John Lapinskas Functions in Hack VM 6/ 7



Implementing function returns

Say our VM translator sees the line return. On the right we
continue the example from last slide. The assembly code we
generate must:

Temporarily store the return address (e.g. in R13).

Copy the return value to the our new working stack, i.e.
the current value of ARG.

Set SP to the top of our new working stack, i.e. ARG+1.

Restore the old values of THAT, THIS, ARG and LCL,
counting down from the current value of LCL to find
them on the stack.

Jump to the return value, effectively discarding
everything above SP.

Notice that our code didn’t ever need to know which function
we called or where we called it from!

Old stuff

argument 1
(auto$57)

Old LCL

Old ARG

Old THIS

Old THAT

local 0

local 1

local 2

Working stack

Return value

Return value

SP

ARG

LCL

John Lapinskas Functions in Hack VM 6/ 7



Implementing function returns

Say our VM translator sees the line return. On the right we
continue the example from last slide. The assembly code we
generate must:

Temporarily store the return address (e.g. in R13).

Copy the return value to the our new working stack, i.e.
the current value of ARG.

Set SP to the top of our new working stack, i.e. ARG+1.

Restore the old values of THAT, THIS, ARG and LCL,
counting down from the current value of LCL to find
them on the stack.

Jump to the return value, effectively discarding
everything above SP.

Notice that our code didn’t ever need to know which function
we called or where we called it from!

Old stuff

argument 1
(auto$57)

Old LCL

Old ARG

Old THIS

Old THAT

local 0

local 1

local 2

Working stack

Return value

Return value

SP

ARG

LCL

John Lapinskas Functions in Hack VM 6/ 7



Implementing function returns

Say our VM translator sees the line return. On the right we
continue the example from last slide. The assembly code we
generate must:

Temporarily store the return address (e.g. in R13).

Copy the return value to the our new working stack, i.e.
the current value of ARG.

Set SP to the top of our new working stack, i.e. ARG+1.

Restore the old values of THAT, THIS, ARG and LCL,
counting down from the current value of LCL to find
them on the stack.

Jump to the return value, effectively discarding
everything above SP.

Notice that our code didn’t ever need to know which function
we called or where we called it from!

Old stuff

argument 1
(auto$57)

Old LCL

Old ARG

Old THIS

Old THAT

local 0

local 1

local 2

Working stack

Return value

Return value

SP

ARG

LCL

John Lapinskas Functions in Hack VM 6/ 7



Initialisation

But how do we set LCL and ARG at the start of the program?

Remember, multi-file Hack VM programs start by calling Sys.init. The
values they have before this call don’t matter. After the call, LCL and ARG

will be set correctly in the usual way.

The default behaviour of the official Sys.init function is to call
initialisation functions from all the other libraries, then call a function
called Main.main, then enter an infinite loop.

(When compiling from Jack, Main.main will be the compiled analogue of
the main function in C — the function the program starts in.)

You now have everything you need for this week’s assignment. Next video
we discuss heap memory allocation, i.e. implementing malloc and free.

John Lapinskas Functions in Hack VM 7/ 7



Initialisation

But how do we set LCL and ARG at the start of the program?

Remember, multi-file Hack VM programs start by calling Sys.init. The
values they have before this call don’t matter. After the call, LCL and ARG

will be set correctly in the usual way.

The default behaviour of the official Sys.init function is to call
initialisation functions from all the other libraries, then call a function
called Main.main, then enter an infinite loop.

(When compiling from Jack, Main.main will be the compiled analogue of
the main function in C — the function the program starts in.)

You now have everything you need for this week’s assignment. Next video
we discuss heap memory allocation, i.e. implementing malloc and free.

John Lapinskas Functions in Hack VM 7/ 7



Initialisation

But how do we set LCL and ARG at the start of the program?

Remember, multi-file Hack VM programs start by calling Sys.init. The
values they have before this call don’t matter. After the call, LCL and ARG

will be set correctly in the usual way.

The default behaviour of the official Sys.init function is to call
initialisation functions from all the other libraries, then call a function
called Main.main, then enter an infinite loop.

(When compiling from Jack, Main.main will be the compiled analogue of
the main function in C — the function the program starts in.)

You now have everything you need for this week’s assignment. Next video
we discuss heap memory allocation, i.e. implementing malloc and free.

John Lapinskas Functions in Hack VM 7/ 7


