
Heap memory allocation: malloc and free

John Lapinskas, University of Bristol

John Lapinskas Heap memory allocation 1 / 10



The two key functions

We’ve talked about memory allocation on the stack, which is incredibly
powerful, but only for variables whose sizes are known at compile-time.

To handle run-time memory allocation in a C-like way, we need to write
two functions. In C they’re called malloc and free, in Jack they’re called
Memory.alloc and Memory.deAlloc. For this video, they will be:

alloc. Takes one int argument, named size. Allocates a memory
segment of size words in heap memory (addresses 0x800–0x3FFF)
and returns the base address of the segment. Returns −1 if no
segment can be allocated.

deAlloc. Takes one int argument, named base. Frees the segment
of memory with base address base (as returned by alloc).

Let’s assume we’re working in a high-level language rather than Hack VM,
and focus on the algorithms themselves rather than on writing code.

John Lapinskas Heap memory allocation 2 / 10



What we need

int alloc(int size). Allocates size words in heap memory and returns
the base address of the new segment, or −1 as an error.

void deAlloc(int base). Frees the segment with base address base.

Our requirements are:

After we have assigned base = alloc(size), then our program should be
free to write whatever it wants to RAM[base], . . . , RAM[base+ size− 1].

So subsequent calls alloc(size2) should not return any value base2 with
base2, . . . , base2+ size2− 1 intersecting base, . . . , base+ size− 1...

at least until after we have called free(base).

We don’t care what happens if our program writes to e.g. RAM[base− 1] or
RAM[base+ size], or writes to e.g. RAM[base] after calling free(base).
(In a modern system, the OS would respond by generating a segfault.)

We’ll step through four progressively better algorithms.

John Lapinskas Heap memory allocation 3 / 10



Attempt 1

RA
M[0x

800
]

RA
M[0x

250
0]

New call alloc(0x200);New call deAlloc(0x2500);

RA
M[0x

270
0]

In RAM[0x800], we store a pointer to the first unallocated memory address.

On a call alloc(size), we return RAM[0x800], then add size to it so that
it points to the new first unallocated memory address.

On a call to deAlloc, we do nothing.

This is the “basic” allocation algorithm in 12.1.3 of Nisan and Schocken.

John Lapinskas Heap memory allocation 4 / 10



Attempt 1

RA
M[0x

800
]

RA
M[0x

250
0]

New call alloc(0x200);

New call deAlloc(0x2500);

RA
M[0x

270
0]

In RAM[0x800], we store a pointer to the first unallocated memory address.

On a call alloc(size), we return RAM[0x800], then add size to it so that
it points to the new first unallocated memory address.

On a call to deAlloc, we do nothing.

This is the “basic” allocation algorithm in 12.1.3 of Nisan and Schocken.

John Lapinskas Heap memory allocation 4 / 10



Attempt 1

RA
M[0x

800
]

RA
M[0x

250
0]

New call alloc(0x200);

New call deAlloc(0x2500);

RA
M[0x

270
0]

In RAM[0x800], we store a pointer to the first unallocated memory address.

On a call alloc(size), we return RAM[0x800], then add size to it so that
it points to the new first unallocated memory address.

On a call to deAlloc, we do nothing.

This is the “basic” allocation algorithm in 12.1.3 of Nisan and Schocken.

John Lapinskas Heap memory allocation 4 / 10



Attempt 1

RA
M[0x

800
]

RA
M[0x

250
0]

New call alloc(0x200);

New call deAlloc(0x2500);

RA
M[0x

270
0]

In RAM[0x800], we store a pointer to the first unallocated memory address.

On a call alloc(size), we return RAM[0x800], then add size to it so that
it points to the new first unallocated memory address.

On a call to deAlloc, we do nothing.

This is the “basic” allocation algorithm in 12.1.3 of Nisan and Schocken.

John Lapinskas Heap memory allocation 4 / 10



Attempt 1

RA
M[0x

800
]

RA
M[0x

250
0]

New call alloc(0x200);

New call deAlloc(0x2500);

RA
M[0x

270
0]

In RAM[0x800], we store a pointer to the first unallocated memory address.

On a call alloc(size), we return RAM[0x800], then add size to it so that
it points to the new first unallocated memory address.

On a call to deAlloc, we do nothing.

This is the “basic” allocation algorithm in 12.1.3 of Nisan and Schocken.

John Lapinskas Heap memory allocation 4 / 10



Attempt 1:

RA
M[0x

800
]

RA
M[0x

250
0]

New call alloc(0x200);

New call deAlloc(0x2500);

RA
M[0x

270
0]

In RAM[0x800], we store a pointer to the first unallocated memory address.

On a call alloc(size), we return RAM[0x800], then add size to it so that
it points to the new first unallocated memory address.

On a call to deAlloc, we do nothing.

This is the “basic” allocation algorithm in 12.1.3 of Nisan and Schocken.

John Lapinskas Heap memory allocation 4 / 10



Attempt 2

OK, so we clearly need to store information somewhere about how many free/allocated
segments we have and how long they are.

But that’s going to be a list in memory of unknown size. Wasn’t that the problem we
were trying to solve in the first place?

Idea: Store this information inside the segments themselves!

Base
address

0x800

0x1FF

0xA00

0x7FF

0x3400

0xFFF

0x2000

Null

0x801

0x1FE

0xC00

0x13FF

0x3000

0x3FF

0x3C00

0x3FF

Every segment contains its usable size as the first word.

Free segments are arranged in a linked list, storing pointers in the second word of
each free segment. RAM[0x800] contains a pointer to the first segment of the list.

Notice that [usable size] = [actual size]− 1! We lose a little space to overhead.

John Lapinskas Heap memory allocation 5 / 10



Attempt 2: Storing information inside segments

OK, so we clearly need to store information somewhere about how many free/allocated
segments we have and how long they are.

But that’s going to be a list in memory of unknown size. Wasn’t that the problem we
were trying to solve in the first place?

Idea: Store this information inside the segments themselves!

Base
address

0x800

0x1FF

0xA00

0x7FF

0x3400

0xFFF

0x2000

Null

0x801

0x1FE

0xC00

0x13FF

0x3000

0x3FF

0x3C00

0x3FF

Every segment contains its usable size as the first word.

Free segments are arranged in a linked list, storing pointers in the second word of
each free segment. RAM[0x800] contains a pointer to the first segment of the list.

Notice that [usable size] = [actual size]− 1! We lose a little space to overhead.

John Lapinskas Heap memory allocation 5 / 10



Attempt 2: Storing information inside segments

OK, so we clearly need to store information somewhere about how many free/allocated
segments we have and how long they are.

But that’s going to be a list in memory of unknown size. Wasn’t that the problem we
were trying to solve in the first place?

Idea: Store this information inside the segments themselves!

Base
address

0x800

0x1FF

0xA00

0x7FF

0x3400

0xFFF

0x2000

Null

0x801

0x1FE

0xC00

0x13FF

0x3000

0x3FF

0x3C00

0x3FF

Every segment contains its usable size as the first word.

Free segments are arranged in a linked list, storing pointers in the second word of
each free segment. RAM[0x800] contains a pointer to the first segment of the list.

Notice that [usable size] = [actual size]− 1! We lose a little space to overhead.

John Lapinskas Heap memory allocation 5 / 10



Behaviour of attempt 2

RA
M[0x

80
0]

0
x3

7
F
E

N
u
l
l

· · ·

RA
M[0x

40
00
]

Screen

N
u
l
l

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
x2

9
F
E

N
u
l
l

RA
M[0x

24
01
]

RA
M[0x

24
01
]

RA
M[0x

24
01
]

N
u
l
l

0
x6

F
F

0
xD

F
E

RA
M[0x

32
01
]

RA
M[0x

32
01
]

RA
M[0x

32
01
]

N
u
l
l

alloc(0xDFF)alloc(0xDFF) returns 0x802alloc(0xDFF)alloc(0xDFF) returns 0x1602alloc(0xDFF)alloc(0xDFF) returns 0x2402alloc(0xDFE)alloc(0xDFE) returns 0x3202deAlloc(0x802)deAlloc(0x1602)deAlloc(0x3202)deAlloc(0x2402)alloc(0x6FF)alloc(0x6FF) returns 0x2402deAlloc(0x2402)

alloc(size) will:

Iterate through the list of free segments looking for one large enough, say S .

Remove S from the list of free segments and update the length of S to size.

Create a new free segment at the end of S (unless S has usable size exactly size)
and add it to the list.

Return the base usable address (i.e. not the address with size information).

deAlloc(base) will:

Insert the newly free segment into the start of the list from RAM[0x800], storing
the pointer in RAM[base].

John Lapinskas Heap memory allocation 6 / 10



Behaviour of attempt 2

RA
M[0x

80
0]

0
x3

7
F
E

N
u
l
l

· · ·

RA
M[0x

40
00
]

Screen

N
u
l
l

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
x2

9
F
E

N
u
l
l

RA
M[0x

24
01
]

RA
M[0x

24
01
]

RA
M[0x

24
01
]

N
u
l
l

0
x6

F
F

0
xD

F
E

RA
M[0x

32
01
]

RA
M[0x

32
01
]

RA
M[0x

32
01
]

N
u
l
l

alloc(0xDFF)

alloc(0xDFF) returns 0x802alloc(0xDFF)alloc(0xDFF) returns 0x1602alloc(0xDFF)alloc(0xDFF) returns 0x2402alloc(0xDFE)alloc(0xDFE) returns 0x3202deAlloc(0x802)deAlloc(0x1602)deAlloc(0x3202)deAlloc(0x2402)alloc(0x6FF)alloc(0x6FF) returns 0x2402deAlloc(0x2402)

alloc(size) will:

Iterate through the list of free segments looking for one large enough, say S .

Remove S from the list of free segments and update the length of S to size.

Create a new free segment at the end of S (unless S has usable size exactly size)
and add it to the list.

Return the base usable address (i.e. not the address with size information).

deAlloc(base) will:

Insert the newly free segment into the start of the list from RAM[0x800], storing
the pointer in RAM[base].

John Lapinskas Heap memory allocation 6 / 10



Behaviour of attempt 2

RA
M[0x

80
0]

0
xD

F
F

N
u
l
l

· · ·

RA
M[0x

40
00
]

Screen

N
u
l
l

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
x2

9
F
E

N
u
l
l

RA
M[0x

24
01
]

RA
M[0x

24
01
]

RA
M[0x

24
01
]

N
u
l
l

0
x6

F
F

0
xD

F
E

RA
M[0x

32
01
]

RA
M[0x

32
01
]

RA
M[0x

32
01
]

N
u
l
l

alloc(0xDFF)

alloc(0xDFF) returns 0x802

alloc(0xDFF)alloc(0xDFF) returns 0x1602alloc(0xDFF)alloc(0xDFF) returns 0x2402alloc(0xDFE)alloc(0xDFE) returns 0x3202deAlloc(0x802)deAlloc(0x1602)deAlloc(0x3202)deAlloc(0x2402)alloc(0x6FF)alloc(0x6FF) returns 0x2402deAlloc(0x2402)

alloc(size) will:

Iterate through the list of free segments looking for one large enough, say S .

Remove S from the list of free segments and update the length of S to size.

Create a new free segment at the end of S (unless S has usable size exactly size)
and add it to the list.

Return the base usable address (i.e. not the address with size information).

deAlloc(base) will:

Insert the newly free segment into the start of the list from RAM[0x800], storing
the pointer in RAM[base].

John Lapinskas Heap memory allocation 6 / 10



Behaviour of attempt 2

RA
M[0x

80
0]

0
xD

F
F

N
u
l
l

· · ·

RA
M[0x

40
00
]

Screen

N
u
l
l

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
x2

9
F
E

N
u
l
l

RA
M[0x

24
01
]

RA
M[0x

24
01
]

RA
M[0x

24
01
]

N
u
l
l

0
x6

F
F

0
xD

F
E

RA
M[0x

32
01
]

RA
M[0x

32
01
]

RA
M[0x

32
01
]

N
u
l
l

alloc(0xDFF)alloc(0xDFF) returns 0x802

alloc(0xDFF)

alloc(0xDFF) returns 0x1602alloc(0xDFF)alloc(0xDFF) returns 0x2402alloc(0xDFE)alloc(0xDFE) returns 0x3202deAlloc(0x802)deAlloc(0x1602)deAlloc(0x3202)deAlloc(0x2402)alloc(0x6FF)alloc(0x6FF) returns 0x2402deAlloc(0x2402)

alloc(size) will:

Iterate through the list of free segments looking for one large enough, say S .

Remove S from the list of free segments and update the length of S to size.

Create a new free segment at the end of S (unless S has usable size exactly size)
and add it to the list.

Return the base usable address (i.e. not the address with size information).

deAlloc(base) will:

Insert the newly free segment into the start of the list from RAM[0x800], storing
the pointer in RAM[base].

John Lapinskas Heap memory allocation 6 / 10



Behaviour of attempt 2

RA
M[0x

80
0]

0
xD

F
F

N
u
l
l

· · ·

RA
M[0x

40
00
]

Screen

N
u
l
l

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
xD

F
F

N
u
l
l

0
x1

B
F
E

RA
M[0x

24
01
]

RA
M[0x

24
01
]

RA
M[0x

24
01
]

N
u
l
l

0
x6

F
F

0
xD

F
E

RA
M[0x

32
01
]

RA
M[0x

32
01
]

RA
M[0x

32
01
]

N
u
l
l

alloc(0xDFF)alloc(0xDFF) returns 0x802alloc(0xDFF)

alloc(0xDFF) returns 0x1602

alloc(0xDFF)alloc(0xDFF) returns 0x2402alloc(0xDFE)alloc(0xDFE) returns 0x3202deAlloc(0x802)deAlloc(0x1602)deAlloc(0x3202)deAlloc(0x2402)alloc(0x6FF)alloc(0x6FF) returns 0x2402deAlloc(0x2402)

alloc(size) will:

Iterate through the list of free segments looking for one large enough, say S .

Remove S from the list of free segments and update the length of S to size.

Create a new free segment at the end of S (unless S has usable size exactly size)
and add it to the list.

Return the base usable address (i.e. not the address with size information).

deAlloc(base) will:

Insert the newly free segment into the start of the list from RAM[0x800], storing
the pointer in RAM[base].

John Lapinskas Heap memory allocation 6 / 10



Behaviour of attempt 2

RA
M[0x

80
0]

0
xD

F
F

N
u
l
l

· · ·

RA
M[0x

40
00
]

Screen

N
u
l
l

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
xD

F
F

N
u
l
l

0
x1

B
F
E

RA
M[0x

24
01
]

RA
M[0x

24
01
]

RA
M[0x

24
01
]

N
u
l
l

0
x6

F
F

0
xD

F
E

RA
M[0x

32
01
]

RA
M[0x

32
01
]

RA
M[0x

32
01
]

N
u
l
l

alloc(0xDFF)alloc(0xDFF) returns 0x802alloc(0xDFF)alloc(0xDFF) returns 0x1602

alloc(0xDFF)

alloc(0xDFF) returns 0x2402alloc(0xDFE)alloc(0xDFE) returns 0x3202deAlloc(0x802)deAlloc(0x1602)deAlloc(0x3202)deAlloc(0x2402)alloc(0x6FF)alloc(0x6FF) returns 0x2402deAlloc(0x2402)

alloc(size) will:

Iterate through the list of free segments looking for one large enough, say S .

Remove S from the list of free segments and update the length of S to size.

Create a new free segment at the end of S (unless S has usable size exactly size)
and add it to the list.

Return the base usable address (i.e. not the address with size information).

deAlloc(base) will:

Insert the newly free segment into the start of the list from RAM[0x800], storing
the pointer in RAM[base].

John Lapinskas Heap memory allocation 6 / 10



Behaviour of attempt 2

RA
M[0x

80
0]

0
xD

F
F

N
u
l
l

· · ·

RA
M[0x

40
00
]

Screen

N
u
l
l

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
xD

F
F

N
u
l
l

0
xD

F
F

RA
M[0x

24
01
]

RA
M[0x

24
01
]

RA
M[0x

24
01
]

N
u
l
l

0
x6

F
F

0
xD

F
E

RA
M[0x

32
01
]

RA
M[0x

32
01
]

RA
M[0x

32
01
]

N
u
l
l

alloc(0xDFF)alloc(0xDFF) returns 0x802alloc(0xDFF)alloc(0xDFF) returns 0x1602alloc(0xDFF)

alloc(0xDFF) returns 0x2402

alloc(0xDFE)alloc(0xDFE) returns 0x3202deAlloc(0x802)deAlloc(0x1602)deAlloc(0x3202)deAlloc(0x2402)alloc(0x6FF)alloc(0x6FF) returns 0x2402deAlloc(0x2402)

alloc(size) will:

Iterate through the list of free segments looking for one large enough, say S .

Remove S from the list of free segments and update the length of S to size.

Create a new free segment at the end of S (unless S has usable size exactly size)
and add it to the list.

Return the base usable address (i.e. not the address with size information).

deAlloc(base) will:

Insert the newly free segment into the start of the list from RAM[0x800], storing
the pointer in RAM[base].

John Lapinskas Heap memory allocation 6 / 10



Behaviour of attempt 2

RA
M[0x

80
0]

0
xD

F
F

N
u
l
l

· · ·

RA
M[0x

40
00
]

Screen

N
u
l
l

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
xD

F
F

N
u
l
l

0
xD

F
F

RA
M[0x

24
01
]

RA
M[0x

24
01
]

RA
M[0x

24
01
]

N
u
l
l

0
x6

F
F

0
xD

F
E

RA
M[0x

32
01
]

RA
M[0x

32
01
]

RA
M[0x

32
01
]

N
u
l
l

alloc(0xDFF)alloc(0xDFF) returns 0x802alloc(0xDFF)alloc(0xDFF) returns 0x1602alloc(0xDFF)alloc(0xDFF) returns 0x2402

alloc(0xDFE)

alloc(0xDFE) returns 0x3202deAlloc(0x802)deAlloc(0x1602)deAlloc(0x3202)deAlloc(0x2402)alloc(0x6FF)alloc(0x6FF) returns 0x2402deAlloc(0x2402)

alloc(size) will:

Iterate through the list of free segments looking for one large enough, say S .

Remove S from the list of free segments and update the length of S to size.

Create a new free segment at the end of S (unless S has usable size exactly size)
and add it to the list.

Return the base usable address (i.e. not the address with size information).

deAlloc(base) will:

Insert the newly free segment into the start of the list from RAM[0x800], storing
the pointer in RAM[base].

John Lapinskas Heap memory allocation 6 / 10



Behaviour of attempt 2

RA
M[0x

80
0]

0
xD

F
F

N
u
l
l · · ·

RA
M[0x

40
00
]

Screen

N
u
l
l

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
xD

F
F

N
u
l
l

0
xD

F
F

RA
M[0x

24
01
]

RA
M[0x

24
01
]

RA
M[0x

24
01
]

N
u
l
l

0
x6

F
F

0
xD

F
E

RA
M[0x

32
01
]

RA
M[0x

32
01
]

RA
M[0x

32
01
]

N
u
l
l

alloc(0xDFF)alloc(0xDFF) returns 0x802alloc(0xDFF)alloc(0xDFF) returns 0x1602alloc(0xDFF)alloc(0xDFF) returns 0x2402alloc(0xDFE)

alloc(0xDFE) returns 0x3202

deAlloc(0x802)deAlloc(0x1602)deAlloc(0x3202)deAlloc(0x2402)alloc(0x6FF)alloc(0x6FF) returns 0x2402deAlloc(0x2402)

alloc(size) will:

Iterate through the list of free segments looking for one large enough, say S .

Remove S from the list of free segments and update the length of S to size.

Create a new free segment at the end of S (unless S has usable size exactly size)
and add it to the list.

Return the base usable address (i.e. not the address with size information).

deAlloc(base) will:

Insert the newly free segment into the start of the list from RAM[0x800], storing
the pointer in RAM[base].

John Lapinskas Heap memory allocation 6 / 10



Behaviour of attempt 2

RA
M[0x

80
0]

0
xD

F
F

N
u
l
l · · ·

RA
M[0x

40
00
]

Screen

N
u
l
l

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
xD

F
F

N
u
l
l

0
xD

F
F

RA
M[0x

24
01
]

RA
M[0x

24
01
]

RA
M[0x

24
01
]

N
u
l
l

0
x6

F
F

0
xD

F
E

RA
M[0x

32
01
]

RA
M[0x

32
01
]

RA
M[0x

32
01
]

N
u
l
l

alloc(0xDFF)alloc(0xDFF) returns 0x802alloc(0xDFF)alloc(0xDFF) returns 0x1602alloc(0xDFF)alloc(0xDFF) returns 0x2402alloc(0xDFE)alloc(0xDFE) returns 0x3202

deAlloc(0x802)

deAlloc(0x1602)deAlloc(0x3202)deAlloc(0x2402)alloc(0x6FF)alloc(0x6FF) returns 0x2402deAlloc(0x2402)

alloc(size) will:

Iterate through the list of free segments looking for one large enough, say S .

Remove S from the list of free segments and update the length of S to size.

Create a new free segment at the end of S (unless S has usable size exactly size)
and add it to the list.

Return the base usable address (i.e. not the address with size information).

deAlloc(base) will:

Insert the newly free segment into the start of the list from RAM[0x800], storing
the pointer in RAM[base].

John Lapinskas Heap memory allocation 6 / 10



Behaviour of attempt 2

RA
M[0x

80
0]

0
xD

F
F

N
u
l
l

· · ·

RA
M[0x

40
00
]

Screen

N
u
l
l

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
xD

F
F

N
u
l
l

0
xD

F
F

RA
M[0x

24
01
]

RA
M[0x

24
01
]

RA
M[0x

24
01
]

N
u
l
l

0
x6

F
F

0
xD

F
E

RA
M[0x

32
01
]

RA
M[0x

32
01
]

RA
M[0x

32
01
]

N
u
l
l

alloc(0xDFF)alloc(0xDFF) returns 0x802alloc(0xDFF)alloc(0xDFF) returns 0x1602alloc(0xDFF)alloc(0xDFF) returns 0x2402alloc(0xDFE)alloc(0xDFE) returns 0x3202

deAlloc(0x802)

deAlloc(0x1602)deAlloc(0x3202)deAlloc(0x2402)alloc(0x6FF)alloc(0x6FF) returns 0x2402deAlloc(0x2402)

alloc(size) will:

Iterate through the list of free segments looking for one large enough, say S .

Remove S from the list of free segments and update the length of S to size.

Create a new free segment at the end of S (unless S has usable size exactly size)
and add it to the list.

Return the base usable address (i.e. not the address with size information).

deAlloc(base) will:

Insert the newly free segment into the start of the list from RAM[0x800], storing
the pointer in RAM[base].

John Lapinskas Heap memory allocation 6 / 10



Behaviour of attempt 2

RA
M[0x

80
0]

0
xD

F
F

N
u
l
l

· · ·

RA
M[0x

40
00
]

Screen

N
u
l
l

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
xD

F
F

N
u
l
l

0
xD

F
F

RA
M[0x

24
01
]

RA
M[0x

24
01
]

RA
M[0x

24
01
]

N
u
l
l

0
x6

F
F

0
xD

F
E

RA
M[0x

32
01
]

RA
M[0x

32
01
]

RA
M[0x

32
01
]

N
u
l
l

alloc(0xDFF)alloc(0xDFF) returns 0x802alloc(0xDFF)alloc(0xDFF) returns 0x1602alloc(0xDFF)alloc(0xDFF) returns 0x2402alloc(0xDFE)alloc(0xDFE) returns 0x3202deAlloc(0x802)

deAlloc(0x1602)

deAlloc(0x3202)deAlloc(0x2402)alloc(0x6FF)alloc(0x6FF) returns 0x2402deAlloc(0x2402)

alloc(size) will:

Iterate through the list of free segments looking for one large enough, say S .

Remove S from the list of free segments and update the length of S to size.

Create a new free segment at the end of S (unless S has usable size exactly size)
and add it to the list.

Return the base usable address (i.e. not the address with size information).

deAlloc(base) will:

Insert the newly free segment into the start of the list from RAM[0x800], storing
the pointer in RAM[base].

John Lapinskas Heap memory allocation 6 / 10



Behaviour of attempt 2

RA
M[0x

80
0]

0
xD

F
F

N
u
l
l

· · ·

RA
M[0x

40
00
]

Screen

N
u
l
l

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
xD

F
F

N
u
l
l

0
xD

F
F

RA
M[0x

24
01
]

RA
M[0x

24
01
]

RA
M[0x

24
01
]

N
u
l
l

0
x6

F
F

0
xD

F
E

RA
M[0x

32
01
]

RA
M[0x

32
01
]

RA
M[0x

32
01
]

N
u
l
l

alloc(0xDFF)alloc(0xDFF) returns 0x802alloc(0xDFF)alloc(0xDFF) returns 0x1602alloc(0xDFF)alloc(0xDFF) returns 0x2402alloc(0xDFE)alloc(0xDFE) returns 0x3202deAlloc(0x802)

deAlloc(0x1602)

deAlloc(0x3202)deAlloc(0x2402)alloc(0x6FF)alloc(0x6FF) returns 0x2402deAlloc(0x2402)

alloc(size) will:

Iterate through the list of free segments looking for one large enough, say S .

Remove S from the list of free segments and update the length of S to size.

Create a new free segment at the end of S (unless S has usable size exactly size)
and add it to the list.

Return the base usable address (i.e. not the address with size information).

deAlloc(base) will:

Insert the newly free segment into the start of the list from RAM[0x800], storing
the pointer in RAM[base].

John Lapinskas Heap memory allocation 6 / 10



Behaviour of attempt 2

RA
M[0x

80
0]

0
xD

F
F

N
u
l
l

· · ·

RA
M[0x

40
00
]

Screen

N
u
l
l

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
xD

F
F

N
u
l
l

0
xD

F
F

RA
M[0x

24
01
]

RA
M[0x

24
01
]

RA
M[0x

24
01
]

N
u
l
l

0
x6

F
F

0
xD

F
E

RA
M[0x

32
01
]

RA
M[0x

32
01
]

RA
M[0x

32
01
]

N
u
l
l

alloc(0xDFF)alloc(0xDFF) returns 0x802alloc(0xDFF)alloc(0xDFF) returns 0x1602alloc(0xDFF)alloc(0xDFF) returns 0x2402alloc(0xDFE)alloc(0xDFE) returns 0x3202deAlloc(0x802)deAlloc(0x1602)

deAlloc(0x3202)

deAlloc(0x2402)alloc(0x6FF)alloc(0x6FF) returns 0x2402deAlloc(0x2402)

alloc(size) will:

Iterate through the list of free segments looking for one large enough, say S .

Remove S from the list of free segments and update the length of S to size.

Create a new free segment at the end of S (unless S has usable size exactly size)
and add it to the list.

Return the base usable address (i.e. not the address with size information).

deAlloc(base) will:

Insert the newly free segment into the start of the list from RAM[0x800], storing
the pointer in RAM[base].

John Lapinskas Heap memory allocation 6 / 10



Behaviour of attempt 2

RA
M[0x

80
0]

0
xD

F
F

N
u
l
l

· · ·

RA
M[0x

40
00
]

Screen

N
u
l
l

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
xD

F
F

N
u
l
l

0
xD

F
F

RA
M[0x

24
01
]

RA
M[0x

24
01
]

RA
M[0x

24
01
]

N
u
l
l

0
x6

F
F

0
xD

F
E

RA
M[0x

32
01
]

RA
M[0x

32
01
]

RA
M[0x

32
01
]

N
u
l
l

alloc(0xDFF)alloc(0xDFF) returns 0x802alloc(0xDFF)alloc(0xDFF) returns 0x1602alloc(0xDFF)alloc(0xDFF) returns 0x2402alloc(0xDFE)alloc(0xDFE) returns 0x3202deAlloc(0x802)deAlloc(0x1602)

deAlloc(0x3202)

deAlloc(0x2402)alloc(0x6FF)alloc(0x6FF) returns 0x2402deAlloc(0x2402)

alloc(size) will:

Iterate through the list of free segments looking for one large enough, say S .

Remove S from the list of free segments and update the length of S to size.

Create a new free segment at the end of S (unless S has usable size exactly size)
and add it to the list.

Return the base usable address (i.e. not the address with size information).

deAlloc(base) will:

Insert the newly free segment into the start of the list from RAM[0x800], storing
the pointer in RAM[base].

John Lapinskas Heap memory allocation 6 / 10



Behaviour of attempt 2

RA
M[0x

80
0]

0
xD

F
F

N
u
l
l

· · ·

RA
M[0x

40
00
]

Screen

N
u
l
l

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
xD

F
F

N
u
l
l

0
xD

F
F

RA
M[0x

24
01
]

RA
M[0x

24
01
]

RA
M[0x

24
01
]

N
u
l
l

0
x6

F
F

0
xD

F
E

RA
M[0x

32
01
]

RA
M[0x

32
01
]

RA
M[0x

32
01
]

N
u
l
l

alloc(0xDFF)alloc(0xDFF) returns 0x802alloc(0xDFF)alloc(0xDFF) returns 0x1602alloc(0xDFF)alloc(0xDFF) returns 0x2402alloc(0xDFE)alloc(0xDFE) returns 0x3202deAlloc(0x802)deAlloc(0x1602)deAlloc(0x3202)

deAlloc(0x2402)

alloc(0x6FF)alloc(0x6FF) returns 0x2402deAlloc(0x2402)

alloc(size) will:

Iterate through the list of free segments looking for one large enough, say S .

Remove S from the list of free segments and update the length of S to size.

Create a new free segment at the end of S (unless S has usable size exactly size)
and add it to the list.

Return the base usable address (i.e. not the address with size information).

deAlloc(base) will:

Insert the newly free segment into the start of the list from RAM[0x800], storing
the pointer in RAM[base].

John Lapinskas Heap memory allocation 6 / 10



Behaviour of attempt 2

RA
M[0x

80
0]

0
xD

F
F

N
u
l
l

· · ·

RA
M[0x

40
00
]

Screen

N
u
l
l

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
xD

F
F

N
u
l
l

0
xD

F
F

RA
M[0x

24
01
]

RA
M[0x

24
01
]

RA
M[0x

24
01
]

N
u
l
l

0
x6

F
F

0
xD

F
E

RA
M[0x

32
01
]

RA
M[0x

32
01
]

RA
M[0x

32
01
]

N
u
l
l

alloc(0xDFF)alloc(0xDFF) returns 0x802alloc(0xDFF)alloc(0xDFF) returns 0x1602alloc(0xDFF)alloc(0xDFF) returns 0x2402alloc(0xDFE)alloc(0xDFE) returns 0x3202deAlloc(0x802)deAlloc(0x1602)deAlloc(0x3202)

deAlloc(0x2402)

alloc(0x6FF)alloc(0x6FF) returns 0x2402deAlloc(0x2402)

alloc(size) will:

Iterate through the list of free segments looking for one large enough, say S .

Remove S from the list of free segments and update the length of S to size.

Create a new free segment at the end of S (unless S has usable size exactly size)
and add it to the list.

Return the base usable address (i.e. not the address with size information).

deAlloc(base) will:

Insert the newly free segment into the start of the list from RAM[0x800], storing
the pointer in RAM[base].

John Lapinskas Heap memory allocation 6 / 10



Behaviour of attempt 2

RA
M[0x

80
0]

0
xD

F
F

N
u
l
l

· · ·

RA
M[0x

40
00
]

Screen

N
u
l
l

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
xD

F
F

N
u
l
l

0
xD

F
F

RA
M[0x

24
01
]

RA
M[0x

24
01
]

RA
M[0x

24
01
]

N
u
l
l

0
x6

F
F

0
xD

F
E

RA
M[0x

32
01
]

RA
M[0x

32
01
]

RA
M[0x

32
01
]

N
u
l
l

alloc(0xDFF)alloc(0xDFF) returns 0x802alloc(0xDFF)alloc(0xDFF) returns 0x1602alloc(0xDFF)alloc(0xDFF) returns 0x2402alloc(0xDFE)alloc(0xDFE) returns 0x3202deAlloc(0x802)deAlloc(0x1602)deAlloc(0x3202)deAlloc(0x2402)

alloc(0x6FF)

alloc(0x6FF) returns 0x2402deAlloc(0x2402)

alloc(size) will:

Iterate through the list of free segments looking for one large enough, say S .

Remove S from the list of free segments and update the length of S to size.

Create a new free segment at the end of S (unless S has usable size exactly size)
and add it to the list.

Return the base usable address (i.e. not the address with size information).

deAlloc(base) will:

Insert the newly free segment into the start of the list from RAM[0x800], storing
the pointer in RAM[base].

John Lapinskas Heap memory allocation 6 / 10



Behaviour of attempt 2

RA
M[0x

80
0]

0
xD

F
F

N
u
l
l

· · ·

RA
M[0x

40
00
]

Screen

N
u
l
l

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
xD

F
F

N
u
l
l

0
x6

F
F

RA
M[0x

24
01
]

RA
M[0x

24
01
]

RA
M[0x

24
01
]

N
u
l
l

0
x6

F
F

0
xD

F
E

RA
M[0x

32
01
]

RA
M[0x

32
01
]

RA
M[0x

32
01
]

N
u
l
l

alloc(0xDFF)alloc(0xDFF) returns 0x802alloc(0xDFF)alloc(0xDFF) returns 0x1602alloc(0xDFF)alloc(0xDFF) returns 0x2402alloc(0xDFE)alloc(0xDFE) returns 0x3202deAlloc(0x802)deAlloc(0x1602)deAlloc(0x3202)deAlloc(0x2402)alloc(0x6FF)

alloc(0x6FF) returns 0x2402

deAlloc(0x2402)

alloc(size) will:

Iterate through the list of free segments looking for one large enough, say S .

Remove S from the list of free segments and update the length of S to size.

Create a new free segment at the end of S (unless S has usable size exactly size)
and add it to the list.

Return the base usable address (i.e. not the address with size information).

deAlloc(base) will:

Insert the newly free segment into the start of the list from RAM[0x800], storing
the pointer in RAM[base].

John Lapinskas Heap memory allocation 6 / 10



Behaviour of attempt 2

RA
M[0x

80
0]

0
xD

F
F

N
u
l
l

· · ·

RA
M[0x

40
00
]

Screen

N
u
l
l

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
xD

F
F

N
u
l
l

0
x6

F
F

RA
M[0x

24
01
]

RA
M[0x

24
01
]

RA
M[0x

24
01
]

N
u
l
l

0
x6

F
F

0
xD

F
E

RA
M[0x

32
01
]

RA
M[0x

32
01
]

RA
M[0x

32
01
]

N
u
l
l

alloc(0xDFF)alloc(0xDFF) returns 0x802alloc(0xDFF)alloc(0xDFF) returns 0x1602alloc(0xDFF)alloc(0xDFF) returns 0x2402alloc(0xDFE)alloc(0xDFE) returns 0x3202deAlloc(0x802)deAlloc(0x1602)deAlloc(0x3202)deAlloc(0x2402)alloc(0x6FF)alloc(0x6FF) returns 0x2402

deAlloc(0x2402)

alloc(size) will:

Iterate through the list of free segments looking for one large enough, say S .

Remove S from the list of free segments and update the length of S to size.

Create a new free segment at the end of S (unless S has usable size exactly size)
and add it to the list.

Return the base usable address (i.e. not the address with size information).

deAlloc(base) will:

Insert the newly free segment into the start of the list from RAM[0x800], storing
the pointer in RAM[base].

John Lapinskas Heap memory allocation 6 / 10



Behaviour of attempt 2

RA
M[0x

80
0]

0
xD

F
F

N
u
l
l

· · ·

RA
M[0x

40
00
]

Screen

N
u
l
l

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
xD

F
F

N
u
l
l

0
x6

F
F

RA
M[0x

24
01
]

RA
M[0x

24
01
]

RA
M[0x

24
01
]

N
u
l
l

0
x6

F
F

0
xD

F
E

RA
M[0x

32
01
]

RA
M[0x

32
01
]

RA
M[0x

32
01
]

N
u
l
l

alloc(0xDFF)alloc(0xDFF) returns 0x802alloc(0xDFF)alloc(0xDFF) returns 0x1602alloc(0xDFF)alloc(0xDFF) returns 0x2402alloc(0xDFE)alloc(0xDFE) returns 0x3202deAlloc(0x802)deAlloc(0x1602)deAlloc(0x3202)deAlloc(0x2402)alloc(0x6FF)alloc(0x6FF) returns 0x2402

deAlloc(0x2402)

alloc(size) will:

Iterate through the list of free segments looking for one large enough, say S .

Remove S from the list of free segments and update the length of S to size.

Create a new free segment at the end of S (unless S has usable size exactly size)
and add it to the list.

Return the base usable address (i.e. not the address with size information).

deAlloc(base) will:

Insert the newly free segment into the start of the list from RAM[0x800], storing
the pointer in RAM[base].

John Lapinskas Heap memory allocation 6 / 10



Behaviour of attempt 2

RA
M[0x

80
0]

0
xD

F
F

N
u
l
l

· · ·

RA
M[0x

40
00
]

Screen

N
u
l
l

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
xD

F
F

N
u
l
l

0
x6

F
F

RA
M[0x

24
01
]

RA
M[0x

24
01
]

RA
M[0x

24
01
]

N
u
l
l

0
x6

F
F

0
xD

F
E

RA
M[0x

32
01
]

RA
M[0x

32
01
]

RA
M[0x

32
01
]

N
u
l
l

alloc(0xDFF)alloc(0xDFF) returns 0x802alloc(0xDFF)alloc(0xDFF) returns 0x1602alloc(0xDFF)alloc(0xDFF) returns 0x2402alloc(0xDFE)alloc(0xDFE) returns 0x3202deAlloc(0x802)deAlloc(0x1602)deAlloc(0x3202)deAlloc(0x2402)alloc(0x6FF)alloc(0x6FF) returns 0x2402deAlloc(0x2402)

Notice that:

Free chunks are not in any sorted order! But they don’t need to be.

We can now at least reuse memory after freeing it.

But in this example, we can no longer allocate any segments larger than 0xDFF
even after freeing our entire memory! Our deAlloc function has serious problems.

This is the “improved” allocation algorithm in 12.1.3 of Nisan and Schocken.

John Lapinskas Heap memory allocation 6 / 10



Attempt 3: Coalescing freed segments

We’d like to fix this by merging segments with adjacent memory segments as they’re
freed. (This process is called coalescing.)

But since our free segment list isn’t in sorted order, this will be very slow.

We’ll need to store some more information to make it efficient.

Base
address

0x800

0x1FD

0xA00

Free

Null

0x1FD

0x7FD

0x3400

Free

0x7FD

0xFFD

0x2000

Free

Null

0xFFD

Used

0x801

0x1FC

0x1FC

Used

0xC00

0x13FD

0x13FD

Used

0x3000

0x3FD

0x3FD

Used

0x3C00

0x3FD

0x3FD

Every segment contains its free/used status as its second word.

Every segment contains its usable size as the first and last words. (This lets us
quickly iterate over all segments in memory in sorted order.)

Free segments are arranged in a doubly-linked list, storing pointers in the third and
fourth words of each free segment. RAM[0x800] contains a pointer to the first
segment of the list. (This lets us quickly delete arbitrary segments from the list.)

John Lapinskas Heap memory allocation 7 / 10



Behaviour of attempt 3

RA
M[0x

80
0]

N
u
l
l

· · ·

RA
M[0x

40
00
]

0
x3

7
F
C

Screen

0
x3

7
F
C

F
r
e
e

N
u
l
l

N
u
l
l

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
x2

9
F
C

F
r
e
e

N
u
l
l

N
u
l
l

0
xD

F
D

RA
M[0x

24
01
]

RA
M[0x

24
01
]

F
r
e
e

N
u
l
l

N
u
l
l

0
xD

F
D

N
u
l
l

N
u
l
l

0
xD

F
C

F
r
e
e

RA
M[0x

32
01
]

alloc(0xDFD)alloc(0xDFD) returns 0x803alloc(0xDFD)alloc(0xDFD) returns 0x1603alloc(0xDFD)alloc(0xDFD) returns 0x2403alloc(0xDFC)alloc(0xDFD) returns 0x3203deAlloc(0x803)deAlloc(0x2403)deAlloc(0x1603)deAlloc(0x3203)

alloc(size) will behave as before, but also update the segment status to used.

deAlloc(base) will:

Set base’s segment status to Free.

Check the segment immediately before base in memory. If it is free, merge base

with it, updating the size accordingly.

Check the segment immediately after base in memory. If it is free, merge base

with it, updating the size accordingly, and delete it from the list of free segments.

If neither is free, insert base into the list of free segments.

John Lapinskas Heap memory allocation 8 / 10



Behaviour of attempt 3

RA
M[0x

80
0]

N
u
l
l

· · ·

RA
M[0x

40
00
]

0
x3

7
F
C

Screen

0
x3

7
F
C

F
r
e
e

N
u
l
l

N
u
l
l

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
x2

9
F
C

F
r
e
e

N
u
l
l

N
u
l
l

0
xD

F
D

RA
M[0x

24
01
]

RA
M[0x

24
01
]

F
r
e
e

N
u
l
l

N
u
l
l

0
xD

F
D

N
u
l
l

N
u
l
l

0
xD

F
C

F
r
e
e

RA
M[0x

32
01
]

alloc(0xDFD)

alloc(0xDFD) returns 0x803alloc(0xDFD)alloc(0xDFD) returns 0x1603alloc(0xDFD)alloc(0xDFD) returns 0x2403alloc(0xDFC)alloc(0xDFD) returns 0x3203deAlloc(0x803)deAlloc(0x2403)deAlloc(0x1603)deAlloc(0x3203)

alloc(size) will behave as before, but also update the segment status to used.

deAlloc(base) will:

Set base’s segment status to Free.

Check the segment immediately before base in memory. If it is free, merge base

with it, updating the size accordingly.

Check the segment immediately after base in memory. If it is free, merge base

with it, updating the size accordingly, and delete it from the list of free segments.

If neither is free, insert base into the list of free segments.

John Lapinskas Heap memory allocation 8 / 10



Behaviour of attempt 3

RA
M[0x

80
0]

N
u
l
l

· · ·

RA
M[0x

40
00
]

0
x2

9
F
C

Screen

0
xD

F
D

U
s
e
d

N
u
l
l

N
u
l
l

0
xD

F
D

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
x2

9
F
C

F
r
e
e

N
u
l
l

N
u
l
l

0
xD

F
D

RA
M[0x

24
01
]

RA
M[0x

24
01
]

F
r
e
e

N
u
l
l

N
u
l
l

0
xD

F
D

N
u
l
l

N
u
l
l

0
xD

F
C

F
r
e
e

RA
M[0x

32
01
]

alloc(0xDFD)

alloc(0xDFD) returns 0x803

alloc(0xDFD)alloc(0xDFD) returns 0x1603alloc(0xDFD)alloc(0xDFD) returns 0x2403alloc(0xDFC)alloc(0xDFD) returns 0x3203deAlloc(0x803)deAlloc(0x2403)deAlloc(0x1603)deAlloc(0x3203)

alloc(size) will behave as before, but also update the segment status to used.

deAlloc(base) will:

Set base’s segment status to Free.

Check the segment immediately before base in memory. If it is free, merge base

with it, updating the size accordingly.

Check the segment immediately after base in memory. If it is free, merge base

with it, updating the size accordingly, and delete it from the list of free segments.

If neither is free, insert base into the list of free segments.

John Lapinskas Heap memory allocation 8 / 10



Behaviour of attempt 3

RA
M[0x

80
0]

N
u
l
l

· · ·

RA
M[0x

40
00
]

0
x2

9
F
C

Screen

0
xD

F
D

U
s
e
d

N
u
l
l

N
u
l
l

0
xD

F
D

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
x2

9
F
C

F
r
e
e

N
u
l
l

N
u
l
l

0
xD

F
D

RA
M[0x

24
01
]

RA
M[0x

24
01
]

F
r
e
e

N
u
l
l

N
u
l
l

0
xD

F
D

N
u
l
l

N
u
l
l

0
xD

F
C

F
r
e
e

RA
M[0x

32
01
]

alloc(0xDFD)alloc(0xDFD) returns 0x803

alloc(0xDFD)

alloc(0xDFD) returns 0x1603alloc(0xDFD)alloc(0xDFD) returns 0x2403alloc(0xDFC)alloc(0xDFD) returns 0x3203deAlloc(0x803)deAlloc(0x2403)deAlloc(0x1603)deAlloc(0x3203)

alloc(size) will behave as before, but also update the segment status to used.

deAlloc(base) will:

Set base’s segment status to Free.

Check the segment immediately before base in memory. If it is free, merge base

with it, updating the size accordingly.

Check the segment immediately after base in memory. If it is free, merge base

with it, updating the size accordingly, and delete it from the list of free segments.

If neither is free, insert base into the list of free segments.

John Lapinskas Heap memory allocation 8 / 10



Behaviour of attempt 3

RA
M[0x

80
0]

N
u
l
l

· · ·

RA
M[0x

40
00
]

0
x1

B
F
E

Screen

0
xD

F
D

U
s
e
d

N
u
l
l

N
u
l
l

0
xD

F
D

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
xD

F
D

U
s
e
d

N
u
l
l

N
u
l
l

0
xD

F
D

0
x1

B
F
C

RA
M[0x

24
01
]

RA
M[0x

24
01
]

F
r
e
e

N
u
l
l

N
u
l
l

0
xD

F
D

N
u
l
l

N
u
l
l

0
xD

F
C

F
r
e
e

RA
M[0x

32
01
]

alloc(0xDFD)alloc(0xDFD) returns 0x803alloc(0xDFD)

alloc(0xDFD) returns 0x1603

alloc(0xDFD)alloc(0xDFD) returns 0x2403alloc(0xDFC)alloc(0xDFD) returns 0x3203deAlloc(0x803)deAlloc(0x2403)deAlloc(0x1603)deAlloc(0x3203)

alloc(size) will behave as before, but also update the segment status to used.

deAlloc(base) will:

Set base’s segment status to Free.

Check the segment immediately before base in memory. If it is free, merge base

with it, updating the size accordingly.

Check the segment immediately after base in memory. If it is free, merge base

with it, updating the size accordingly, and delete it from the list of free segments.

If neither is free, insert base into the list of free segments.

John Lapinskas Heap memory allocation 8 / 10



Behaviour of attempt 3

RA
M[0x

80
0]

N
u
l
l

· · ·

RA
M[0x

40
00
]

0
x1

B
F
E

Screen

0
xD

F
D

U
s
e
d

N
u
l
l

N
u
l
l

0
xD

F
D

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
xD

F
D

U
s
e
d

N
u
l
l

N
u
l
l

0
xD

F
D

0
x1

B
F
C

RA
M[0x

24
01
]

RA
M[0x

24
01
]

F
r
e
e

N
u
l
l

N
u
l
l

0
xD

F
D

N
u
l
l

N
u
l
l

0
xD

F
C

F
r
e
e

RA
M[0x

32
01
]

alloc(0xDFD)alloc(0xDFD) returns 0x803alloc(0xDFD)alloc(0xDFD) returns 0x1603

alloc(0xDFD)

alloc(0xDFD) returns 0x2403alloc(0xDFC)alloc(0xDFD) returns 0x3203deAlloc(0x803)deAlloc(0x2403)deAlloc(0x1603)deAlloc(0x3203)

alloc(size) will behave as before, but also update the segment status to used.

deAlloc(base) will:

Set base’s segment status to Free.

Check the segment immediately before base in memory. If it is free, merge base

with it, updating the size accordingly.

Check the segment immediately after base in memory. If it is free, merge base

with it, updating the size accordingly, and delete it from the list of free segments.

If neither is free, insert base into the list of free segments.

John Lapinskas Heap memory allocation 8 / 10



Behaviour of attempt 3

RA
M[0x

80
0]

N
u
l
l

· · ·

RA
M[0x

40
00
]

0
xD

F
C

Screen

0
xD

F
D

U
s
e
d

N
u
l
l

N
u
l
l

0
xD

F
D

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
xD

F
D

U
s
e
d

N
u
l
l

N
u
l
l

0
xD

F
D

0
xD

F
D

RA
M[0x

24
01
]

RA
M[0x

24
01
]

U
s
e
d

N
u
l
l

N
u
l
l

0
xD

F
D

N
u
l
l

N
u
l
l

0
xD

F
C

F
r
e
e

RA
M[0x

32
01
]

alloc(0xDFD)alloc(0xDFD) returns 0x803alloc(0xDFD)alloc(0xDFD) returns 0x1603alloc(0xDFD)

alloc(0xDFD) returns 0x2403

alloc(0xDFC)alloc(0xDFD) returns 0x3203deAlloc(0x803)deAlloc(0x2403)deAlloc(0x1603)deAlloc(0x3203)

alloc(size) will behave as before, but also update the segment status to used.

deAlloc(base) will:

Set base’s segment status to Free.

Check the segment immediately before base in memory. If it is free, merge base

with it, updating the size accordingly.

Check the segment immediately after base in memory. If it is free, merge base

with it, updating the size accordingly, and delete it from the list of free segments.

If neither is free, insert base into the list of free segments.

John Lapinskas Heap memory allocation 8 / 10



Behaviour of attempt 3

RA
M[0x

80
0]

N
u
l
l

· · ·

RA
M[0x

40
00
]

0
xD

F
C

Screen

0
xD

F
D

U
s
e
d

N
u
l
l

N
u
l
l

0
xD

F
D

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
xD

F
D

U
s
e
d

N
u
l
l

N
u
l
l

0
xD

F
D

0
xD

F
D

RA
M[0x

24
01
]

RA
M[0x

24
01
]

U
s
e
d

N
u
l
l

N
u
l
l

0
xD

F
D

N
u
l
l

N
u
l
l

0
xD

F
C

F
r
e
e

RA
M[0x

32
01
]

alloc(0xDFD)alloc(0xDFD) returns 0x803alloc(0xDFD)alloc(0xDFD) returns 0x1603alloc(0xDFD)alloc(0xDFD) returns 0x2403

alloc(0xDFC)

alloc(0xDFD) returns 0x3203deAlloc(0x803)deAlloc(0x2403)deAlloc(0x1603)deAlloc(0x3203)

alloc(size) will behave as before, but also update the segment status to used.

deAlloc(base) will:

Set base’s segment status to Free.

Check the segment immediately before base in memory. If it is free, merge base

with it, updating the size accordingly.

Check the segment immediately after base in memory. If it is free, merge base

with it, updating the size accordingly, and delete it from the list of free segments.

If neither is free, insert base into the list of free segments.

John Lapinskas Heap memory allocation 8 / 10



Behaviour of attempt 3

RA
M[0x

80
0]

N
u
l
l · · ·

RA
M[0x

40
00
]

0
xD

F
C

Screen

0
xD

F
D

U
s
e
d

N
u
l
l

N
u
l
l

0
xD

F
D

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
xD

F
D

U
s
e
d

N
u
l
l

N
u
l
l

0
xD

F
D

0
xD

F
D

RA
M[0x

24
01
]

RA
M[0x

24
01
]

U
s
e
d

N
u
l
l

N
u
l
l

0
xD

F
D

N
u
l
l

N
u
l
l

0
xD

F
C

U
s
e
d

RA
M[0x

32
01
]

alloc(0xDFD)alloc(0xDFD) returns 0x803alloc(0xDFD)alloc(0xDFD) returns 0x1603alloc(0xDFD)alloc(0xDFD) returns 0x2403alloc(0xDFC)

alloc(0xDFD) returns 0x3203

deAlloc(0x803)deAlloc(0x2403)deAlloc(0x1603)deAlloc(0x3203)

alloc(size) will behave as before, but also update the segment status to used.

deAlloc(base) will:

Set base’s segment status to Free.

Check the segment immediately before base in memory. If it is free, merge base

with it, updating the size accordingly.

Check the segment immediately after base in memory. If it is free, merge base

with it, updating the size accordingly, and delete it from the list of free segments.

If neither is free, insert base into the list of free segments.

John Lapinskas Heap memory allocation 8 / 10



Behaviour of attempt 3

RA
M[0x

80
0]

N
u
l
l · · ·

RA
M[0x

40
00
]

0
xD

F
C

Screen

0
xD

F
D

U
s
e
d

N
u
l
l

N
u
l
l

0
xD

F
D

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
xD

F
D

U
s
e
d

N
u
l
l

N
u
l
l

0
xD

F
D

0
xD

F
D

RA
M[0x

24
01
]

RA
M[0x

24
01
]

U
s
e
d

N
u
l
l

N
u
l
l

0
xD

F
D

N
u
l
l

N
u
l
l

0
xD

F
C

U
s
e
d

RA
M[0x

32
01
]

alloc(0xDFD)alloc(0xDFD) returns 0x803alloc(0xDFD)alloc(0xDFD) returns 0x1603alloc(0xDFD)alloc(0xDFD) returns 0x2403alloc(0xDFC)alloc(0xDFD) returns 0x3203

deAlloc(0x803)

deAlloc(0x2403)deAlloc(0x1603)deAlloc(0x3203)

alloc(size) will behave as before, but also update the segment status to used.

deAlloc(base) will:

Set base’s segment status to Free.

Check the segment immediately before base in memory. If it is free, merge base

with it, updating the size accordingly.

Check the segment immediately after base in memory. If it is free, merge base

with it, updating the size accordingly, and delete it from the list of free segments.

If neither is free, insert base into the list of free segments.

John Lapinskas Heap memory allocation 8 / 10



Behaviour of attempt 3

RA
M[0x

80
0]

N
u
l
l

· · ·

RA
M[0x

40
00
]

0
xD

F
C

Screen

0
xD

F
D

F
r
e
e

N
u
l
l

N
u
l
l

0
xD

F
D

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
xD

F
D

U
s
e
d

N
u
l
l

N
u
l
l

0
xD

F
D

0
xD

F
D

RA
M[0x

24
01
]

RA
M[0x

24
01
]

U
s
e
d

N
u
l
l

N
u
l
l

0
xD

F
D

N
u
l
l

N
u
l
l

0
xD

F
C

U
s
e
d

RA
M[0x

32
01
]

alloc(0xDFD)alloc(0xDFD) returns 0x803alloc(0xDFD)alloc(0xDFD) returns 0x1603alloc(0xDFD)alloc(0xDFD) returns 0x2403alloc(0xDFC)alloc(0xDFD) returns 0x3203

deAlloc(0x803)

deAlloc(0x2403)deAlloc(0x1603)deAlloc(0x3203)

alloc(size) will behave as before, but also update the segment status to used.

deAlloc(base) will:

Set base’s segment status to Free.

Check the segment immediately before base in memory. If it is free, merge base

with it, updating the size accordingly.

Check the segment immediately after base in memory. If it is free, merge base

with it, updating the size accordingly, and delete it from the list of free segments.

If neither is free, insert base into the list of free segments.

John Lapinskas Heap memory allocation 8 / 10



Behaviour of attempt 3

RA
M[0x

80
0]

N
u
l
l

· · ·

RA
M[0x

40
00
]

0
xD

F
C

Screen

0
xD

F
D

F
r
e
e

N
u
l
l

N
u
l
l

0
xD

F
D

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
xD

F
D

U
s
e
d

N
u
l
l

N
u
l
l

0
xD

F
D

0
xD

F
D

RA
M[0x

24
01
]

RA
M[0x

24
01
]

U
s
e
d

N
u
l
l

N
u
l
l

0
xD

F
D

N
u
l
l

N
u
l
l

0
xD

F
C

U
s
e
d

RA
M[0x

32
01
]

alloc(0xDFD)alloc(0xDFD) returns 0x803alloc(0xDFD)alloc(0xDFD) returns 0x1603alloc(0xDFD)alloc(0xDFD) returns 0x2403alloc(0xDFC)alloc(0xDFD) returns 0x3203deAlloc(0x803)

deAlloc(0x2403)

deAlloc(0x1603)deAlloc(0x3203)

alloc(size) will behave as before, but also update the segment status to used.

deAlloc(base) will:

Set base’s segment status to Free.

Check the segment immediately before base in memory. If it is free, merge base

with it, updating the size accordingly.

Check the segment immediately after base in memory. If it is free, merge base

with it, updating the size accordingly, and delete it from the list of free segments.

If neither is free, insert base into the list of free segments.

John Lapinskas Heap memory allocation 8 / 10



Behaviour of attempt 3

RA
M[0x

80
0]

N
u
l
l

· · ·

RA
M[0x

40
00
]

0
xD

F
C

Screen

0
xD

F
D

F
r
e
e

N
u
l
l

N
u
l
l

0
xD

F
D

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
xD

F
D

U
s
e
d

N
u
l
l

N
u
l
l

0
xD

F
D

0
xD

F
D

RA
M[0x

24
01
]

RA
M[0x

24
01
]

F
r
e
e

N
u
l
l

N
u
l
l

0
xD

F
D

N
u
l
l

N
u
l
l

0
xD

F
C

U
s
e
d

RA
M[0x

32
01
]

alloc(0xDFD)alloc(0xDFD) returns 0x803alloc(0xDFD)alloc(0xDFD) returns 0x1603alloc(0xDFD)alloc(0xDFD) returns 0x2403alloc(0xDFC)alloc(0xDFD) returns 0x3203deAlloc(0x803)

deAlloc(0x2403)

deAlloc(0x1603)deAlloc(0x3203)

alloc(size) will behave as before, but also update the segment status to used.

deAlloc(base) will:

Set base’s segment status to Free.

Check the segment immediately before base in memory. If it is free, merge base

with it, updating the size accordingly.

Check the segment immediately after base in memory. If it is free, merge base

with it, updating the size accordingly, and delete it from the list of free segments.

If neither is free, insert base into the list of free segments.

John Lapinskas Heap memory allocation 8 / 10



Behaviour of attempt 3

RA
M[0x

80
0]

N
u
l
l

· · ·

RA
M[0x

40
00
]

0
xD

F
C

Screen

0
xD

F
D

F
r
e
e

N
u
l
l

N
u
l
l

0
xD

F
D

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
xD

F
D

U
s
e
d

N
u
l
l

N
u
l
l

0
xD

F
D

0
xD

F
D

RA
M[0x

24
01
]

RA
M[0x

24
01
]

F
r
e
e

N
u
l
l

N
u
l
l

0
xD

F
D

N
u
l
l

N
u
l
l

0
xD

F
C

U
s
e
d

RA
M[0x

32
01
]

alloc(0xDFD)alloc(0xDFD) returns 0x803alloc(0xDFD)alloc(0xDFD) returns 0x1603alloc(0xDFD)alloc(0xDFD) returns 0x2403alloc(0xDFC)alloc(0xDFD) returns 0x3203deAlloc(0x803)deAlloc(0x2403)

deAlloc(0x1603)

deAlloc(0x3203)

alloc(size) will behave as before, but also update the segment status to used.

deAlloc(base) will:

Set base’s segment status to Free.

Check the segment immediately before base in memory. If it is free, merge base

with it, updating the size accordingly.

Check the segment immediately after base in memory. If it is free, merge base

with it, updating the size accordingly, and delete it from the list of free segments.

If neither is free, insert base into the list of free segments.

John Lapinskas Heap memory allocation 8 / 10



Behaviour of attempt 3

RA
M[0x

80
0]

N
u
l
l

· · ·

RA
M[0x

40
00
]

0
xD

F
C

Screen

0
xD

F
D

F
r
e
e

N
u
l
l

N
u
l
l

0
xD

F
D

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
xD

F
D

F
r
e
e

N
u
l
l

N
u
l
l

0
xD

F
D

0
xD

F
D

RA
M[0x

24
01
]

RA
M[0x

24
01
]

F
r
e
e

N
u
l
l

N
u
l
l

0
xD

F
D

N
u
l
l

N
u
l
l

0
xD

F
C

U
s
e
d

RA
M[0x

32
01
]

alloc(0xDFD)alloc(0xDFD) returns 0x803alloc(0xDFD)alloc(0xDFD) returns 0x1603alloc(0xDFD)alloc(0xDFD) returns 0x2403alloc(0xDFC)alloc(0xDFD) returns 0x3203deAlloc(0x803)deAlloc(0x2403)

deAlloc(0x1603)

deAlloc(0x3203)

alloc(size) will behave as before, but also update the segment status to used.

deAlloc(base) will:

Set base’s segment status to Free.

Check the segment immediately before base in memory. If it is free, merge base

with it, updating the size accordingly.

Check the segment immediately after base in memory. If it is free, merge base

with it, updating the size accordingly, and delete it from the list of free segments.

If neither is free, insert base into the list of free segments.

John Lapinskas Heap memory allocation 8 / 10



Behaviour of attempt 3

RA
M[0x

80
0]

N
u
l
l

· · ·

RA
M[0x

40
00
]

0
xD

F
C

Screen

0
x1

B
F
D

F
r
e
e

N
u
l
l

N
u
l
l

0
xD

F
D

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
xD

F
D

F
r
e
e

N
u
l
l

N
u
l
l

0
x1

B
F
D

0
xD

F
D

RA
M[0x

24
01
]

RA
M[0x

24
01
]

F
r
e
e

N
u
l
l

N
u
l
l

0
xD

F
D

N
u
l
l

N
u
l
l

0
xD

F
C

U
s
e
d

RA
M[0x

32
01
]

alloc(0xDFD)alloc(0xDFD) returns 0x803alloc(0xDFD)alloc(0xDFD) returns 0x1603alloc(0xDFD)alloc(0xDFD) returns 0x2403alloc(0xDFC)alloc(0xDFD) returns 0x3203deAlloc(0x803)deAlloc(0x2403)

deAlloc(0x1603)

deAlloc(0x3203)

alloc(size) will behave as before, but also update the segment status to used.

deAlloc(base) will:

Set base’s segment status to Free.

Check the segment immediately before base in memory. If it is free, merge base

with it, updating the size accordingly.

Check the segment immediately after base in memory. If it is free, merge base

with it, updating the size accordingly, and delete it from the list of free segments.

If neither is free, insert base into the list of free segments.

John Lapinskas Heap memory allocation 8 / 10



Behaviour of attempt 3

RA
M[0x

80
0]

N
u
l
l

· · ·

RA
M[0x

40
00
]

0
xD

F
C

Screen

0
x2

9
F
D

F
r
e
e

N
u
l
l

N
u
l
l

0
xD

F
D

RA
M[0x

16
01
]

RA
M[0x

16
01
]

0
xD

F
D

F
r
e
e

N
u
l
l

N
u
l
l

0
x1

B
F
D

0
xD

F
D

RA
M[0x

24
01
]

RA
M[0x

24
01
]

F
r
e
e

N
u
l
l

N
u
l
l

0
x2

9
F
D

N
u
l
l

N
u
l
l

0
xD

F
C

U
s
e
d

RA
M[0x

32
01
]

alloc(0xDFD)alloc(0xDFD) returns 0x803alloc(0xDFD)alloc(0xDFD) returns 0x1603alloc(0xDFD)alloc(0xDFD) returns 0x2403alloc(0xDFC)alloc(0xDFD) returns 0x3203deAlloc(0x803)deAlloc(0x2403)

deAlloc(0x1603)

deAlloc(0x3203)

alloc(size) will behave as before, but also update the segment status to used.

deAlloc(base) will:

Set base’s segment status to Free.

Check the segment immediately before base in memory. If it is free, merge base

with it, updating the size accordingly.

Check the segment immediately after base in memory. If it is free, merge base

with it, updating the size accordingly, and delete it from the list of free segments.

If neither is free, insert base into the list of free segments.

John Lapinskas Heap memory allocation 8 / 10



Behaviour of attempt 3

RA
M[0x

80
0]

N
u
l
l

· · ·

RA
M[0x

40
00
]

0
xD

F
C

Screen

0
x2

9
F
D

F
r
e
e

N
u
l
l

N
u
l
l

0
xD

F
D

RA
M[0x

16
01
]

RA
M[0x

16
01
]

F
r
e
e

N
u
l
l

N
u
l
l

0
x1

B
F
D

0
xD

F
D

RA
M[0x

24
01
]

RA
M[0x

24
01
]

N
u
l
l

N
u
l
l

0
x2

9
F
D

N
u
l
l

N
u
l
l

0
xD

F
C

U
s
e
d

RA
M[0x

32
01
]

alloc(0xDFD)alloc(0xDFD) returns 0x803alloc(0xDFD)alloc(0xDFD) returns 0x1603alloc(0xDFD)alloc(0xDFD) returns 0x2403alloc(0xDFC)alloc(0xDFD) returns 0x3203deAlloc(0x803)deAlloc(0x2403)

deAlloc(0x1603)

deAlloc(0x3203)

alloc(size) will behave as before, but also update the segment status to used.

deAlloc(base) will:

Set base’s segment status to Free.

Check the segment immediately before base in memory. If it is free, merge base

with it, updating the size accordingly.

Check the segment immediately after base in memory. If it is free, merge base

with it, updating the size accordingly, and delete it from the list of free segments.

If neither is free, insert base into the list of free segments.

John Lapinskas Heap memory allocation 8 / 10



Behaviour of attempt 3

RA
M[0x

80
0]

N
u
l
l

· · ·

RA
M[0x

40
00
]

0
xD

F
C

Screen

0
x2

9
F
D

F
r
e
e

N
u
l
l

N
u
l
l

0
xD

F
D

RA
M[0x

16
01
]

RA
M[0x

16
01
]

F
r
e
e

N
u
l
l

N
u
l
l

0
x1

B
F
D

0
x6

F
D

RA
M[0x

24
01
]

RA
M[0x

24
01
]

N
u
l
l

N
u
l
l

0
x2

9
F
D

N
u
l
l

N
u
l
l

0
xD

F
C

U
s
e
d

RA
M[0x

32
01
]

alloc(0xDFD)alloc(0xDFD) returns 0x803alloc(0xDFD)alloc(0xDFD) returns 0x1603alloc(0xDFD)alloc(0xDFD) returns 0x2403alloc(0xDFC)alloc(0xDFD) returns 0x3203deAlloc(0x803)deAlloc(0x2403)deAlloc(0x1603)

deAlloc(0x3203)

alloc(size) will behave as before, but also update the segment status to used.

deAlloc(base) will:

Set base’s segment status to Free.

Check the segment immediately before base in memory. If it is free, merge base

with it, updating the size accordingly.

Check the segment immediately after base in memory. If it is free, merge base

with it, updating the size accordingly, and delete it from the list of free segments.

If neither is free, insert base into the list of free segments.

John Lapinskas Heap memory allocation 8 / 10



Behaviour of attempt 3

RA
M[0x

80
0]

N
u
l
l

· · ·

RA
M[0x

40
00
]

0
xD

F
C

Screen

0
x2

9
F
D

F
r
e
e

N
u
l
l

N
u
l
l

0
xD

F
D

RA
M[0x

16
01
]

RA
M[0x

16
01
]

F
r
e
e

N
u
l
l

N
u
l
l

0
x1

B
F
D

0
x6

F
D

RA
M[0x

24
01
]

RA
M[0x

24
01
]

N
u
l
l

N
u
l
l

0
x2

9
F
D

N
u
l
l

N
u
l
l

0
xD

F
C

F
r
e
e

RA
M[0x

32
01
]

alloc(0xDFD)alloc(0xDFD) returns 0x803alloc(0xDFD)alloc(0xDFD) returns 0x1603alloc(0xDFD)alloc(0xDFD) returns 0x2403alloc(0xDFC)alloc(0xDFD) returns 0x3203deAlloc(0x803)deAlloc(0x2403)deAlloc(0x1603)

deAlloc(0x3203)

alloc(size) will behave as before, but also update the segment status to used.

deAlloc(base) will:

Set base’s segment status to Free.

Check the segment immediately before base in memory. If it is free, merge base

with it, updating the size accordingly.

Check the segment immediately after base in memory. If it is free, merge base

with it, updating the size accordingly, and delete it from the list of free segments.

If neither is free, insert base into the list of free segments.

John Lapinskas Heap memory allocation 8 / 10



Behaviour of attempt 3

RA
M[0x

80
0]

N
u
l
l

· · ·

RA
M[0x

40
00
]

0
x3

7
F
C

Screen

0
x3

7
F
C

F
r
e
e

N
u
l
l

N
u
l
l

0
xD

F
D

RA
M[0x

16
01
]

RA
M[0x

16
01
]

F
r
e
e

N
u
l
l

N
u
l
l

0
x1

B
F
D

0
x6

F
D

RA
M[0x

24
01
]

RA
M[0x

24
01
]

N
u
l
l

N
u
l
l

0
x2

9
F
D

N
u
l
l

N
u
l
l

0
xD

F
C

F
r
e
e

RA
M[0x

32
01
]

alloc(0xDFD)alloc(0xDFD) returns 0x803alloc(0xDFD)alloc(0xDFD) returns 0x1603alloc(0xDFD)alloc(0xDFD) returns 0x2403alloc(0xDFC)alloc(0xDFD) returns 0x3203deAlloc(0x803)deAlloc(0x2403)deAlloc(0x1603)

deAlloc(0x3203)

alloc(size) will behave as before, but also update the segment status to used.

deAlloc(base) will:

Set base’s segment status to Free.

Check the segment immediately before base in memory. If it is free, merge base

with it, updating the size accordingly.

Check the segment immediately after base in memory. If it is free, merge base

with it, updating the size accordingly, and delete it from the list of free segments.

If neither is free, insert base into the list of free segments.

John Lapinskas Heap memory allocation 8 / 10



Behaviour of attempt 3

RA
M[0x

80
0]

N
u
l
l

· · ·

RA
M[0x

40
00
]

0
x3

7
F
C

Screen

0
x3

7
F
C

F
r
e
e

N
u
l
l

N
u
l
l

0
xD

F
D

RA
M[0x

16
01
]

RA
M[0x

16
01
]

F
r
e
e

N
u
l
l

N
u
l
l

0
x1

B
F
D

0
x6

F
D

RA
M[0x

24
01
]

RA
M[0x

24
01
]

N
u
l
l

N
u
l
l

0
x2

9
F
D

N
u
l
l

N
u
l
l

0
xD

F
C

F
r
e
e

RA
M[0x

32
01
]

alloc(0xDFD)alloc(0xDFD) returns 0x803alloc(0xDFD)alloc(0xDFD) returns 0x1603alloc(0xDFD)alloc(0xDFD) returns 0x2403alloc(0xDFC)alloc(0xDFD) returns 0x3203deAlloc(0x803)deAlloc(0x2403)deAlloc(0x1603)

deAlloc(0x3203)

alloc(size) will behave as before, but also update the segment status to used.

deAlloc(base) will:

Set base’s segment status to Free.

Check the segment immediately before base in memory. If it is free, merge base

with it, updating the size accordingly.

Check the segment immediately after base in memory. If it is free, merge base

with it, updating the size accordingly, and delete it from the list of free segments.

If neither is free, insert base into the list of free segments.

John Lapinskas Heap memory allocation 8 / 10



Behaviour of attempt 3

RA
M[0x

80
0]

N
u
l
l

· · ·

RA
M[0x

40
00
]

0
x3

7
F
C

Screen

0
x3

7
F
C

F
r
e
e

N
u
l
l

N
u
l
l

0
xD

F
D

RA
M[0x

16
01
]

RA
M[0x

16
01
]

F
r
e
e

N
u
l
l

N
u
l
l

0
x1

B
F
D

0
x6

F
D

RA
M[0x

24
01
]

RA
M[0x

24
01
]

N
u
l
l

N
u
l
l

0
x2

9
F
D

N
u
l
l

N
u
l
l

0
xD

F
C

F
r
e
e

RA
M[0x

32
01
]

alloc(0xDFD)alloc(0xDFD) returns 0x803alloc(0xDFD)alloc(0xDFD) returns 0x1603alloc(0xDFD)alloc(0xDFD) returns 0x2403alloc(0xDFC)alloc(0xDFD) returns 0x3203deAlloc(0x803)deAlloc(0x2403)deAlloc(0x1603)deAlloc(0x3203)

Our deAlloc function now works properly!

And the only part of either deAlloc or alloc that takes longer than O(1) time is when
alloc looks through the free segment list for one that’s big enough.

John Lapinskas Heap memory allocation 8 / 10



Fragmentation

We can still have problems with the wrong sequence of allocs and deAllocs:

John Lapinskas Heap memory allocation 9 / 10



Fragmentation

We can still have problems with the wrong sequence of allocs and deAllocs:

John Lapinskas Heap memory allocation 9 / 10



Fragmentation

We can still have problems with the wrong sequence of allocs and deAllocs:

John Lapinskas Heap memory allocation 9 / 10



Fragmentation

We can still have problems with the wrong sequence of allocs and deAllocs:

John Lapinskas Heap memory allocation 9 / 10



Fragmentation

We can still have problems with the wrong sequence of allocs and deAllocs:

John Lapinskas Heap memory allocation 9 / 10



Fragmentation

We can still have problems with the wrong sequence of allocs and deAllocs:

John Lapinskas Heap memory allocation 9 / 10



Fragmentation

We can still have problems with the wrong sequence of allocs and deAllocs:

John Lapinskas Heap memory allocation 9 / 10



Fragmentation

We can still have problems with the wrong sequence of allocs and deAllocs:

John Lapinskas Heap memory allocation 9 / 10



Fragmentation

We can still have problems with the wrong sequence of allocs and deAllocs:

John Lapinskas Heap memory allocation 9 / 10



Fragmentation

We can still have problems with the wrong sequence of allocs and deAllocs:

John Lapinskas Heap memory allocation 9 / 10



Fragmentation

We can still have problems with the wrong sequence of allocs and deAllocs:

Half our memory is free, but we can’t alloc more than a few words!

Note we didn’t need to do anything too awful to get into this situation — it would
be enough to e.g. alloc a lot of small segments and then free half of them in a
random order.

This problem is called fragmentation, and affects both memory and file systems.

In one sense, there’s an easy solution:

John Lapinskas Heap memory allocation 9 / 10



Fragmentation

We can still have problems with the wrong sequence of allocs and deAllocs:

Half our memory is free, but we can’t alloc more than a few words!

Note we didn’t need to do anything too awful to get into this situation — it would
be enough to e.g. alloc a lot of small segments and then free half of them in a
random order.

This problem is called fragmentation, and affects both memory and file systems.

In one sense, there’s an easy solution: deAlloc each segment in increasing order
and then reAlloc it, copying the data from the old location to the new one.

With algorithm #3 or #4, the resulting free space will always be in one segment.
This process is called defragmentation, and is a bit slow but certain to work.

John Lapinskas Heap memory allocation 9 / 10



Fragmentation

We can still have problems with the wrong sequence of allocs and deAllocs:

Half our memory is free, but we can’t alloc more than a few words!

Note we didn’t need to do anything too awful to get into this situation — it would
be enough to e.g. alloc a lot of small segments and then free half of them in a
random order.

This problem is called fragmentation, and affects both memory and file systems.

In one sense, there’s an easy solution: deAlloc each segment in increasing order
and then reAlloc it, copying the data from the old location to the new one.

With algorithm #3 or #4, the resulting free space will always be in one segment.
This process is called defragmentation, and is a bit slow but certain to work.

John Lapinskas Heap memory allocation 9 / 10



Fragmentation

We can still have problems with the wrong sequence of allocs and deAllocs:

Half our memory is free, but we can’t alloc more than a few words!

Note we didn’t need to do anything too awful to get into this situation — it would
be enough to e.g. alloc a lot of small segments and then free half of them in a
random order.

This problem is called fragmentation, and affects both memory and file systems.

In one sense, there’s an easy solution: deAlloc each segment in increasing order
and then reAlloc it, copying the data from the old location to the new one.

With algorithm #3 or #4, the resulting free space will always be in one segment.
This process is called defragmentation, and is a bit slow but certain to work.

John Lapinskas Heap memory allocation 9 / 10



Fragmentation

We can still have problems with the wrong sequence of allocs and deAllocs:

Half our memory is free, but we can’t alloc more than a few words!

Note we didn’t need to do anything too awful to get into this situation — it would
be enough to e.g. alloc a lot of small segments and then free half of them in a
random order.

This problem is called fragmentation, and affects both memory and file systems.

In one sense, there’s an easy solution: deAlloc each segment in increasing order
and then reAlloc it, copying the data from the old location to the new one.

With algorithm #3 or #4, the resulting free space will always be in one segment.
This process is called defragmentation, and is a bit slow but certain to work.

John Lapinskas Heap memory allocation 9 / 10



Fragmentation

We can still have problems with the wrong sequence of allocs and deAllocs:

Half our memory is free, but we can’t alloc more than a few words!

Note we didn’t need to do anything too awful to get into this situation — it would
be enough to e.g. alloc a lot of small segments and then free half of them in a
random order.

This problem is called fragmentation, and affects both memory and file systems.

In one sense, there’s an easy solution: deAlloc each segment in increasing order
and then reAlloc it, copying the data from the old location to the new one.

With algorithm #3 or #4, the resulting free space will always be in one segment.
This process is called defragmentation, and is a bit slow but certain to work.

John Lapinskas Heap memory allocation 9 / 10



Fragmentation

We can still have problems with the wrong sequence of allocs and deAllocs:

There’s one serious problem:

John Lapinskas Heap memory allocation 9 / 10



Fragmentation

We can still have problems with the wrong sequence of allocs and deAllocs:

There’s one serious problem: we cannot defragment as part of alloc or deAlloc
calls. Remember, each alloc call just returns a pointer. We don’t know what the
calling code has done with that pointer, or what will happen if we change it.

As programmers, we have to deal with this ourselves — not just in Hack, but in
C too! This is a major advantage of languages like Java (next TB) that deny the
programmer direct access to memory via pointers, instead using references that
behave similarly but go through a layer of indirection rather than containing actual
memory addresses.

John Lapinskas Heap memory allocation 9 / 10



Fragmentation

We can still have problems with the wrong sequence of allocs and deAllocs:

The best we can do as part of alloc and deAlloc is try to stop memory becoming
too fragmented to begin with by choosing our alloc return values carefully.

Our alloc currently uses the first-fit heuristic: returning the first available memory
segment that’s big enough. This is fast, but prone to fragmentation.

We can instead use the best-fit heuristic: look at the whole list of free segments
and return the one whose size is closest to the requested size. This is less prone to
fragmentation, but very slow.

What if we could make best-fit, or something close to best-fit, much faster?

John Lapinskas Heap memory allocation 9 / 10



Attempt 4: Bins

We can store not one doubly-linked list of free segments, but ten, which we call bins!

In RAM[0x800], we store a pointer to the first free segment up to 0x1C words long.

In RAM[0x801], we store a pointer to the first free segment 0x1D–0x38 words long.

In RAM[0x802], we store a pointer to the first free segment 0x39–0x70 words long.

. . .

In RAM[0x809], we store a pointer to the first free segment 1C01–3800 words long.

alloc and deAlloc work almost exactly as before, with two differences:

On calling alloc(size) and looking for a free segment, we start scanning from
the bin that will contain free segments of length size. If we don’t find one, we
scan through the bin containing 2× size, and so on.1

When merging/splitting segments, we need to check which bin they go in.

If we want to get really fancy, we can replace the doubly-linked lists with e.g. balanced
binary search trees (e.g. 2-3-4 trees) and quickly pick the best-fit memory segment!
(Modern malloc implementations do sort their bins, so it’s worth the overhead...)

1
Alternatively, we can start scanning from the bin that will contain free segments of length 2 × size, using the bin

containing size as a last resort. This will lead to more fragmentation but will be much faster on average.

John Lapinskas Heap memory allocation 10 / 10



Attempt 4: Bins

We can store not one doubly-linked list of free segments, but ten, which we call bins!

In RAM[0x800], we store a pointer to the first free segment up to 0x1C words long.

In RAM[0x801], we store a pointer to the first free segment 0x1D–0x38 words long.

In RAM[0x802], we store a pointer to the first free segment 0x39–0x70 words long.

. . .

In RAM[0x809], we store a pointer to the first free segment 1C01–3800 words long.

alloc and deAlloc work almost exactly as before, with two differences:

On calling alloc(size) and looking for a free segment, we start scanning from
the bin that will contain free segments of length size. If we don’t find one, we
scan through the bin containing 2× size, and so on.1

When merging/splitting segments, we need to check which bin they go in.

If we want to get really fancy, we can replace the doubly-linked lists with e.g. balanced
binary search trees (e.g. 2-3-4 trees) and quickly pick the best-fit memory segment!
(Modern malloc implementations do sort their bins, so it’s worth the overhead...)

1
Alternatively, we can start scanning from the bin that will contain free segments of length 2 × size, using the bin

containing size as a last resort. This will lead to more fragmentation but will be much faster on average.

John Lapinskas Heap memory allocation 10 / 10



Attempt 4: Bins

We can store not one doubly-linked list of free segments, but ten, which we call bins!

In RAM[0x800], we store a pointer to the first free segment up to 0x1C words long.

In RAM[0x801], we store a pointer to the first free segment 0x1D–0x38 words long.

In RAM[0x802], we store a pointer to the first free segment 0x39–0x70 words long.

. . .

In RAM[0x809], we store a pointer to the first free segment 1C01–3800 words long.

alloc and deAlloc work almost exactly as before, with two differences:

On calling alloc(size) and looking for a free segment, we start scanning from
the bin that will contain free segments of length size. If we don’t find one, we
scan through the bin containing 2× size, and so on.1

When merging/splitting segments, we need to check which bin they go in.

If we want to get really fancy, we can replace the doubly-linked lists with e.g. balanced
binary search trees (e.g. 2-3-4 trees) and quickly pick the best-fit memory segment!
(Modern malloc implementations do sort their bins, so it’s worth the overhead...)

1
Alternatively, we can start scanning from the bin that will contain free segments of length 2 × size, using the bin

containing size as a last resort. This will lead to more fragmentation but will be much faster on average.

John Lapinskas Heap memory allocation 10 / 10


