
The Jack language

John Lapinskas, University of Bristol

John Lapinskas The Jack language 1 / 17

Our goals for this week

Physics

Transistors

Gates

Components

Computer microarchitecture

Instruction set architecture

Assembly

Intermediate representation

High-level language

Hardware

Software

This week, we’ll at last be dealing with a high-level language — Jack.

Our goal will be to compile Jack to Hack VM — together with our VM translator
and our Hack assembler, this will give us a full compiler.

John Lapinskas The Jack language 2 / 17

Our goals for this week

Physics

Transistors

Gates

Components

Computer microarchitecture

Instruction set architecture

Assembly

Intermediate representation

High-level language

Hardware

Software

The details of Jack are non-examinable — in this unit we don’t care about Jack
itself, or about coding in Jack, but about compiling Jack.

So take this video as a high-level overview, but don’t bother memorising it, and
use the grammar described next lecture as your main reference.

If in doubt, you can use the nand2tetris Jack compiler (downloadable from the unit
page) to test the validity of any piece of Jack code.

John Lapinskas The Jack language 2 / 17

The ethos of Jack

The two most common phrases in discussing Jack are:

“Just like in C, but...”
“For the sake of simplicity [in compiling]...”

Source: xkcd 2587 (here). Alt text: For the sake of simplicity, gardeners are assumed to move through Euclidean space —
neglecting the distortion from general relativity — unless they are in the vicinity of a Schwarzschild Orchid.

John Lapinskas The Jack language 3 / 17

https://xkcd.com/2587/

Variables, statements and comments

Variables are declared like in C, but with a var keyword at the start, e.g.
var int x; or var char a, b, c;.

The built-in types are char, int and boolean.

Libraries provide Array and String types.

Unlike C, variables can’t be initialised on declaration, so e.g. var int

x = 0; is not valid.

For simplicity, all variables must be defined at the start of a function.

Statements assigning values to variables work like C, but with a let

keyword at the start, e.g. let x = 5; or let c = "z";. For simplicity,
assignment operators like += and *= are not supported.

These extra keywords are purely to make parsing and compiling a little
easier, and were a common feature of early languages like BASIC.

Like in C, comments are denoted with // or /*...*/, and newlines and
whitespace are ignored (except for spaces separating tokens).

John Lapinskas The Jack language 4 / 17

Variables, statements and comments

Variables are declared like in C, but with a var keyword at the start, e.g.
var int x; or var char a, b, c;.

The built-in types are char, int and boolean.

Libraries provide Array and String types.

Unlike C, variables can’t be initialised on declaration, so e.g. var int

x = 0; is not valid.

For simplicity, all variables must be defined at the start of a function.

Statements assigning values to variables work like C, but with a let

keyword at the start, e.g. let x = 5; or let c = "z";. For simplicity,
assignment operators like += and *= are not supported.

These extra keywords are purely to make parsing and compiling a little
easier, and were a common feature of early languages like BASIC.

Like in C, comments are denoted with // or /*...*/, and newlines and
whitespace are ignored (except for spaces separating tokens).

John Lapinskas The Jack language 4 / 17

Variables, statements and comments

Variables are declared like in C, but with a var keyword at the start, e.g.
var int x; or var char a, b, c;.

The built-in types are char, int and boolean.

Libraries provide Array and String types.

Unlike C, variables can’t be initialised on declaration, so e.g. var int

x = 0; is not valid.

For simplicity, all variables must be defined at the start of a function.

Statements assigning values to variables work like C, but with a let

keyword at the start, e.g. let x = 5; or let c = "z";. For simplicity,
assignment operators like += and *= are not supported.

These extra keywords are purely to make parsing and compiling a little
easier, and were a common feature of early languages like BASIC.

Like in C, comments are denoted with // or /*...*/, and newlines and
whitespace are ignored (except for spaces separating tokens).

John Lapinskas The Jack language 4 / 17

Functions

Functions are declared like in C, but with a function keyword at the
start. For example,

function int Main.max (int x, int y) {
// Function body here

}

defines Main.max to have two int arguments x and y and return an int.

Like in C, a function which returns no value is defined with void, e.g.
function void Main.print (string toPrint).

Like in C, functions return values with the syntax e.g. return 42; or
return;. Unlike C, every function must end with a return.

Function calls are also like in C, with one exception: a line which only calls
a function and throws the return value away must start with the do
keyword. For example, Main.print("Hello, world!"); is not valid, but
do Main.print("Hello, world!"); is valid.

John Lapinskas The Jack language 5 / 17

Functions

Functions are declared like in C, but with a function keyword at the
start. For example,

function int Main.max (int x, int y) {
// Function body here

}

defines Main.max to have two int arguments x and y and return an int.

Like in C, a function which returns no value is defined with void, e.g.
function void Main.print (string toPrint).

Like in C, functions return values with the syntax e.g. return 42; or
return;. Unlike C, every function must end with a return.

Function calls are also like in C, with one exception: a line which only calls
a function and throws the return value away must start with the do
keyword. For example, Main.print("Hello, world!"); is not valid, but
do Main.print("Hello, world!"); is valid.

John Lapinskas The Jack language 5 / 17

Functions

Functions are declared like in C, but with a function keyword at the
start. For example,

function int Main.max (int x, int y) {
// Function body here

}

defines Main.max to have two int arguments x and y and return an int.

Like in C, a function which returns no value is defined with void, e.g.
function void Main.print (string toPrint).

Like in C, functions return values with the syntax e.g. return 42; or
return;. Unlike C, every function must end with a return.

Function calls are also like in C, with one exception: a line which only calls
a function and throws the return value away must start with the do
keyword. For example, Main.print("Hello, world!"); is not valid, but
do Main.print("Hello, world!"); is valid.

John Lapinskas The Jack language 5 / 17

Expressions

In all programming languages, an expression is part of a statement that
returns a value.

A literal (like 5 or true or "Hello, world!") is an expression — the
value is just the literal itself. Variable names are expressions, too.

In C, anywhere you could write a literal, you can also write a more
complicated expression, such as:

(z+x)/7.

fibonacci(x+1).

max(fibonacci(*x), fibonacci(fibonacci(y++))).

The same is true in Jack. do, let and return statements can all be
followed by expressions, and function calls can use expressions as
arguments. There’s no limit on how long or complex an expression can be.

John Lapinskas The Jack language 6 / 17

Supported expressions

The following common C expression
components are supported:

Arithmetic: +, -, *, /.

Logic: &, |, and ~ (which means
NOT). These act as both bitwise and
logic operators.

Comparison: = (not ==), > and <.

Literals: Integers, strings, true,
false, and null (which is the same
as false).

Array subscripts [] (see later).

Variables.

Function calls (which can have
expressions as arguments).

Parentheses ().

For simplicity, the following common C
expression components are not supported:

The modulo operation: %.

Bit shifts: << and >>.

Referencing/dereferencing: Unary *

and &.

Increment/decrement: ++ and --.

Comparison: !=, <= and >=.

Assignment as part of an expression
returning true on success.

The ternary operator ?.

In Jack, there is no operator
precedence without ()s. For
example, 1+2*3 may evaluate to
either 7 or 9.

John Lapinskas The Jack language 7 / 17

Control flow: Loops and conditionals

Jack supports if-else statements with expressions just like C, except that
else if is not supported. For example:

if (x > 5 & ~(y + f(x) = 7)) {
// Code here

} else if (z = 2) {
// Code here

}

is not valid Jack, due to the else if, but...

John Lapinskas The Jack language 8 / 17

Control flow: Loops and conditionals

Jack supports if-else statements with expressions just like C, except that
else if is not supported. For example:

if (x > 5 & ~(y + f(x) = 7)) {
// Code here

} else { if (z = 2) {
// Code here

}}

is valid Jack.

Jack also supports C-like while loops:

while (x < 5 | Main.fibonacci(x) = 13) {
// Code here

}

For simplicity, it doesn’t support do...while or for loops.

John Lapinskas The Jack language 8 / 17

Variable types

There is no casting in Jack. Implicit type conversions are supported
between int, char and boolean variables, treating:

char variables as ints according to the Hack character set (Appendix
C of Nisan and Schocken, also see week 5);

boolean values of true as -1 and false as 0.

For example,

var int x; var boolean y; var char z;

let x = -1; let y = x; let z = x + 71;

is valid Hack and will set y to true and z to "F".

We will get this “for free” by representing char and boolean variables as
ints this way in memory, then completely ignoring their type information.

Handling types properly can get extremely complicated for reasons that
will become clear in OOP next TB.

See e.g. this paper which shows that
accurate type checking in Java is literally impossible unless you’re willing
to accept your type checker failing to terminate on some inputs!

John Lapinskas The Jack language 9 / 17

https://arxiv.org/abs/1605.05274

Variable types

There is no casting in Jack. Implicit type conversions are supported
between int, char and boolean variables, treating:

char variables as ints according to the Hack character set (Appendix
C of Nisan and Schocken, also see week 5);

boolean values of true as -1 and false as 0.

For example,

var int x; var boolean y; var char z;

let x = -1; let y = x; let z = x + 71;

is valid Hack and will set y to true and z to "F".

We will get this “for free” by representing char and boolean variables as
ints this way in memory, then completely ignoring their type information.

Handling types properly can get extremely complicated for reasons that
will become clear in OOP next TB. See e.g. this paper which shows that
accurate type checking in Java is literally impossible unless you’re willing
to accept your type checker failing to terminate on some inputs!

John Lapinskas The Jack language 9 / 17

https://arxiv.org/abs/1605.05274

The one new-ish idea: Classes

In place of C’s structs, Jack has something slightly harder: classes.

Classes are a core feature of object-oriented programming (OOP) that
you’ll see next term. But thankfully, Jack lacks all the (many!) features of
classes that make them any more complicated than structs.

The only real difference between Jack’s classes and C’s structs is:

In C, the functions associated with a struct (e.g. read token,
malloc token etc.) are separate from the struct statement that
defines it. They could even be in different files!

In Jack, the functions associated with a class are contained in the
class statement that defines it.

This leads to some natural syntax (which is common in OOP more
generally) which is nice for the Jack programmer, but which we have to
deal with in compiling.

John Lapinskas The Jack language 10 / 17

The one new-ish idea: Classes

In place of C’s structs, Jack has something slightly harder: classes.

Classes are a core feature of object-oriented programming (OOP) that
you’ll see next term. But thankfully, Jack lacks all the (many!) features of
classes that make them any more complicated than structs.

The only real difference between Jack’s classes and C’s structs is:

In C, the functions associated with a struct (e.g. read token,
malloc token etc.) are separate from the struct statement that
defines it. They could even be in different files!

In Jack, the functions associated with a class are contained in the
class statement that defines it.

This leads to some natural syntax (which is common in OOP more
generally) which is nice for the Jack programmer, but which we have to
deal with in compiling.

John Lapinskas The Jack language 10 / 17

Class variables: fields and statics

A field variable in Jack is the exact equivalent of a normal struct variable in C.

C code

struct Foo {
int x;

int y;

}

Corresponding Jack code

class Foo {
field int x;

field int y;

}

Unlike C, structs can also have static variables declared with syntax static

int x. A static variable is shared between all members of the class.

Class variables can be declared with the normal syntax: var Foo myFoo;.
All class variables must be defined at the start of the class.

For simplicity, Jack doesn’t support the C syntax myFoo.x to access or update
the value of the x field of the Foo-type variable myFoo. Instead, we use methods.

John Lapinskas The Jack language 11 / 17

Methods

A method is a special sort of function which “belongs” to a class. It can only be called
from a specific instance of that class.

From inside a method definition, the fields of the class variable act as local variables.
(This replaces C-style myFoo.x syntax.) The class variable itself can also be accessed via
the this keyword, and methodCall() is interpreted as this.methodCall().

C code

void twiddleFoo(struct Foo abc) {
abc.x = abc.x + abc.y;

abc.y = abc.y - 1;

}
twiddleFoo(myFoo);

twiddleFoo(myOtherFoo);

Corresponding Jack code

class Foo() {
// [Rest of definition omitted]

method void twiddle() {
let x = x + y;

let y = y - 1;

}
}
myFoo.twiddle();

myOtherFoo.twiddle();

In the code on the right, the value of this will be myFoo in the first call to twiddle and
myOtherFoo in the second call, just like abc in the code on the left.

John Lapinskas The Jack language 12 / 17

Constructors

Classes can also contain constructors, a special type of function intended to create a
new class variable.

At runtime, a constructor function will automatically create a new class variable on
the heap at the start of the function call.

The this keyword is set to this new class variable, and the constructor should end with
a return this; statement. Like with methods, fields of this can be accessed as
pre-defined local variables.

C code

struct Foo* newFoo(int a) {
Foo* new = malloc(sizeof(foo));

new->x = 5;

new->y = a;

return new;

}
myFoo = newFoo(42);

Corresponding Jack code

class Foo() {
// [Rest of definition omitted]

constructor Foo newFoo(int a) {
let x = 5;

let y = a;

return this;

}
}
myFoo = Foo.newFoo(42);

John Lapinskas The Jack language 13 / 17

Constructors

Classes can also contain constructors, a special type of function intended to create a
new class variable.

At runtime, a constructor function will automatically create a new class variable on
the heap at the start of the function call.

The this keyword is set to this new class variable, and the constructor should end with
a return this; statement. Like with methods, fields of this can be accessed as
pre-defined local variables.

Classes can contain functions as well, which work as described earlier.

When called, both constructors and functions must start with the name of the class.
So e.g. let myFoo = Foo.makeFoo(); is valid Jack code, but let myFoo = makeFoo();

is not.

Finally, note that both code examples above leak memory in the same way. As classes
in Jack are allocated on the heap, they must be freed from memory just like malloc’d
pointers to structs in C. Normally this would be done via a dedicated method (often called
dispose), which would in turn call Memory.deAlloc(this) after any other cleanup.

John Lapinskas The Jack language 13 / 17

Classes vs structs: The summary

C code with structs

struct Foo {
int x;

int y;

}

struct Foo* newFoo(int a) {
Foo* new = malloc(sizeof(foo));

new->x = 5;

new->y = a;

return new;

}

void twiddleFoo(struct Foo* abc) {
abc->x = abc->x + abc->y;

abc->y = abc->y - 1;

free(abc);

}

// [A bunch of code omitted]

struct Foo* my foo = newFoo(42);

twiddleFoo(my foo);

Corresponding Jack code with classes

class Foo {
field int x;

field int y;

constructor Foo newFoo(int a) {
let x = 5;

let y = a;

return this;

}

method twiddleFoo() {
let x = x + y;

let y = y - 1;

Memory.deAlloc(this);

}
}

// [A bunch of code omitted]

var Foo my foo = Foo.newFoo(42);

my foo.twiddleFoo();

John Lapinskas The Jack language 14 / 17

[] syntax for arrays and strings

In Jack, all class-type variables are stored on the heap — only ints, chars
and booleans are stored on the stack.

Effectively, all of these variables are stored as pointers — treating a
variable of type Foo as an int will reveal it to be the heap address at
which the fields of Foo are stored. (See video 3...)

The expression my object[i] means: go to the address of my object,
add i to it, and return the result.

The implementation of the Array and String classes then ensures that
the address of my object will be the first entry of the array/string, so the
syntax does what you would expect.

(This is all very much a Jack idea — C stores structs on the stack!)

This also gives us a backdoor into memory. For example, the code var
int x; let x = 16384; let x[0] = 0; will set RAM[0x4000] to zero.

John Lapinskas The Jack language 15 / 17

Compiling multiple files

In Jack, each file contains one class declaration. The file Foo.jack should
contain the class Foo (along with all its fields, methods, and so on).

Everything must be inside a class. Those parts of your program which (in C)
wouldn’t be associated with a struct should be placed in the Main class.

Every Jack program will start by calling the function Main.main(), making it the
analogue of the main function in C.

Every Jack file is compiled to Hack VM separately. Afterwards, multiple .vm files
can then be combined into a single Hack assembly file by the VM translator, and
from there compiled to Hack machine code by the assembler.

However, Jack files can still use classes defined in other Jack files. The compiler
simply assumes any such classes will be available, and that e.g. any methods used
will be present. This sidesteps the need for e.g. C’s makefiles, at the cost of worse
error handling.

John Lapinskas The Jack language 16 / 17

Putting it all together: An example program

// Inputs some numbers and computes their average

class Main {
function void main() {

var Array a;

var int length;

var int i, sum;

let length = Keyboard.readInt("How many numbers? ");

let a = Array.new(length); // constructs the array

let i = 0;

while (i < length) {
let a[i] = Keyboard.readInt("Enter a number: ");

let sum = sum + a[i];

let i = i + 1;

}

do Output.printString("The average is ");

do Output.printInt(sum / length);

return;

}
}

Source: Nisan and Schocken example program Average.

Here the Keyboard.readInt, Array.new, Output.printString and
Output.printInt functions are all part of the standard libraries (see Nisan and
Schocken appendix 6).

We won’t need to care about these for writing a compiler, though!
John Lapinskas The Jack language 17 / 17

