
Compiling Jack’s classes

John Lapinskas, University of Bristol

John Lapinskas Compiling Jack’s classes 1 / 11

How objects work

An instance of a class is called an object.

In Jack, every object is a pointer-based array. For any class Foo, the code

var Foo myFoo;

// Code to initialise myFoo

Output.PrintInt(myFoo);

will print the RAM address at which myFoo is stored.

If Foo has fields x, y and z, defined in that order, then:

myFoo.x is stored at RAM[myFoo].

myFoo.y is stored at RAM[myFoo+ 1], and

myFoo.z is stored at RAM[myFoo+ 2].

Given this, it makes sense that myFoo[i] evaluates to RAM[myFoo+ i].
So in this example, myFoo[2] will evaluate to myFoo.z.

For simplicity, all object fields in Jack are allocated on the heap.
The pointer Foo is stored on the stack like any other var.

(This is all very similar to how structs work in C, except that they can be allocated on
the stack and must deal with different field sizes!)

John Lapinskas Compiling Jack’s classes 2 / 11

How objects work

An instance of a class is called an object.

In Jack, every object is a pointer-based array. For any class Foo, the code

var Foo myFoo;

// Code to initialise myFoo

Output.PrintInt(myFoo);

will print the RAM address at which myFoo is stored.

If Foo has fields x, y and z, defined in that order, then:

myFoo.x is stored at RAM[myFoo].

myFoo.y is stored at RAM[myFoo+ 1], and

myFoo.z is stored at RAM[myFoo+ 2].

Given this, it makes sense that myFoo[i] evaluates to RAM[myFoo+ i].
So in this example, myFoo[2] will evaluate to myFoo.z.

For simplicity, all object fields in Jack are allocated on the heap.
The pointer Foo is stored on the stack like any other var.

(This is all very similar to how structs work in C, except that they can be allocated on
the stack and must deal with different field sizes!)

John Lapinskas Compiling Jack’s classes 2 / 11

How objects work

An instance of a class is called an object.

In Jack, every object is a pointer-based array. For any class Foo, the code

var Foo myFoo;

// Code to initialise myFoo

Output.PrintInt(myFoo);

will print the RAM address at which myFoo is stored.

If Foo has fields x, y and z, defined in that order, then:

myFoo.x is stored at RAM[myFoo].

myFoo.y is stored at RAM[myFoo+ 1], and

myFoo.z is stored at RAM[myFoo+ 2].

Given this, it makes sense that myFoo[i] evaluates to RAM[myFoo+ i].
So in this example, myFoo[2] will evaluate to myFoo.z.

For simplicity, all object fields in Jack are allocated on the heap.
The pointer Foo is stored on the stack like any other var.

(This is all very similar to how structs work in C, except that they can be allocated on
the stack and must deal with different field sizes!)

John Lapinskas Compiling Jack’s classes 2 / 11

How objects work

An instance of a class is called an object.

In Jack, every object is a pointer-based array. For any class Foo, the code

var Foo myFoo;

// Code to initialise myFoo

Output.PrintInt(myFoo);

will print the RAM address at which myFoo is stored.

If Foo has fields x, y and z, defined in that order, then:

myFoo.x is stored at RAM[myFoo].

myFoo.y is stored at RAM[myFoo+ 1], and

myFoo.z is stored at RAM[myFoo+ 2].

Given this, it makes sense that myFoo[i] evaluates to RAM[myFoo+ i].
So in this example, myFoo[2] will evaluate to myFoo.z.

For simplicity, all object fields in Jack are allocated on the heap.
The pointer Foo is stored on the stack like any other var.

(This is all very similar to how structs work in C, except that they can be allocated on
the stack and must deal with different field sizes!)

John Lapinskas Compiling Jack’s classes 2 / 11

Desired subroutine behaviour

Recall classes can have functions, methods, and constructors.

Collectively, we call these subroutines.1

All subroutines myClass.mySub of a class myClass should do the following:

On compiling the subroutine call, output Hack VM code which adds the
given arguments (which are ⟨expression⟩s) onto the stack, followed by a
call command to myClass.mySub.

On compiling the ⟨parameterList⟩ and ⟨varDec⟩s, build a symbol table (see
last video). Use it to replace vars with numbered locals and arguments
with numbered arguments in the ⟨statements⟩ of the ⟨subroutineBody⟩.

On compiling the subroutine return, add the returned ⟨expression⟩ onto the
stack if there is one or a dummy value if not, then output a Hack VM
return command.

In compiling ⟨doStatement⟩s, make sure to e.g. pop temp 0 after the
⟨subroutineCall⟩ to avoid a “memory leak” onto the stack.

1
This is unusual terminology — a subroutine more often refers to a void function — but it follows Nisan and Schocken.

John Lapinskas Compiling Jack’s classes 3 / 11

Desired subroutine behaviour

Recall classes can have functions, methods, and constructors.

Collectively, we call these subroutines.1

All subroutines myClass.mySub of a class myClass should do the following:

On compiling the subroutine call, output Hack VM code which adds the
given arguments (which are ⟨expression⟩s) onto the stack, followed by a
call command to myClass.mySub.

On compiling the ⟨parameterList⟩ and ⟨varDec⟩s, build a symbol table (see
last video). Use it to replace vars with numbered locals and arguments
with numbered arguments in the ⟨statements⟩ of the ⟨subroutineBody⟩.

On compiling the subroutine return, add the returned ⟨expression⟩ onto the
stack if there is one or a dummy value if not, then output a Hack VM
return command.

In compiling ⟨doStatement⟩s, make sure to e.g. pop temp 0 after the
⟨subroutineCall⟩ to avoid a “memory leak” onto the stack.

1
This is unusual terminology — a subroutine more often refers to a void function — but it follows Nisan and Schocken.

John Lapinskas Compiling Jack’s classes 3 / 11

Desired subroutine behaviour

Recall classes can have functions, methods, and constructors.

Collectively, we call these subroutines.1

All subroutines myClass.mySub of a class myClass should do the following:

On compiling the subroutine call, output Hack VM code which adds the
given arguments (which are ⟨expression⟩s) onto the stack, followed by a
call command to myClass.mySub.

On compiling the ⟨parameterList⟩ and ⟨varDec⟩s, build a symbol table (see
last video). Use it to replace vars with numbered locals and arguments
with numbered arguments in the ⟨statements⟩ of the ⟨subroutineBody⟩.

On compiling the subroutine return, add the returned ⟨expression⟩ onto the
stack if there is one or a dummy value if not, then output a Hack VM
return command.

In compiling ⟨doStatement⟩s, make sure to e.g. pop temp 0 after the
⟨subroutineCall⟩ to avoid a “memory leak” onto the stack.

1
This is unusual terminology — a subroutine more often refers to a void function — but it follows Nisan and Schocken.

John Lapinskas Compiling Jack’s classes 3 / 11

Desired subroutine behaviour

Recall classes can have functions, methods, and constructors.

Collectively, we call these subroutines.1

All subroutines myClass.mySub of a class myClass should do the following:

On compiling the subroutine call, output Hack VM code which adds the
given arguments (which are ⟨expression⟩s) onto the stack, followed by a
call command to myClass.mySub.

On compiling the ⟨parameterList⟩ and ⟨varDec⟩s, build a symbol table (see
last video). Use it to replace vars with numbered locals and arguments
with numbered arguments in the ⟨statements⟩ of the ⟨subroutineBody⟩.

On compiling the subroutine return, add the returned ⟨expression⟩ onto the
stack if there is one or a dummy value if not, then output a Hack VM
return command.

In compiling ⟨doStatement⟩s, make sure to e.g. pop temp 0 after the
⟨subroutineCall⟩ to avoid a “memory leak” onto the stack.

1
This is unusual terminology — a subroutine more often refers to a void function — but it follows Nisan and Schocken.

John Lapinskas Compiling Jack’s classes 3 / 11

Differences between subroutine types

Functions can disregard their host classes (except for static variables). However, both
constructors and methods are associated with a current object of their class:

Constructors automatically create their current object on being called, using
Memory.alloc to allocate a suitably-sized segment on the heap. (The point is to
return the current object at the end of the subroutine call.)

Methods are normally called with the syntax myVar.myMethod() rather than
myClass.myMethod(), and they take myVar as their current object.

Within the bodies of both methods and constructors:

The this keyword evaluates to the current object.

Any field x of the host class evaluates to this.x.2

Any method of the host class can be called with the syntax myMethod(), and this
will be interpreted as this.myMethod().

This is vital for OOP later, but in the context of Jack, it just means you can write e.g.
myToken.write(output) rather than write token(myToken, output).

2
Here this.x is C syntax, not Jack syntax. Jack doesn’t support using myObject.myField to refer to an object’s field the

way C does for structs, as to compile it, you’d need to be able to access information about a class’ fields while compiling a
different file. That would need a a full pass of semantic analysis across every file in the program — not impossible, but annoying.

John Lapinskas Compiling Jack’s classes 4 / 11

Differences between subroutine types

Functions can disregard their host classes (except for static variables). However, both
constructors and methods are associated with a current object of their class:

Constructors automatically create their current object on being called, using
Memory.alloc to allocate a suitably-sized segment on the heap. (The point is to
return the current object at the end of the subroutine call.)

Methods are normally called with the syntax myVar.myMethod() rather than
myClass.myMethod(), and they take myVar as their current object.

Within the bodies of both methods and constructors:

The this keyword evaluates to the current object.

Any field x of the host class evaluates to this.x.2

Any method of the host class can be called with the syntax myMethod(), and this
will be interpreted as this.myMethod().

This is vital for OOP later, but in the context of Jack, it just means you can write e.g.
myToken.write(output) rather than write token(myToken, output).

2
Here this.x is C syntax, not Jack syntax. Jack doesn’t support using myObject.myField to refer to an object’s field the

way C does for structs, as to compile it, you’d need to be able to access information about a class’ fields while compiling a
different file. That would need a a full pass of semantic analysis across every file in the program — not impossible, but annoying.

John Lapinskas Compiling Jack’s classes 4 / 11

The ⟨class⟩ symbol table

Source: Nisan and Schocken Figure 11.2 (repeat from last video).

Just like with the subroutine class table, we’ll only ever need to know where field and
static variables are stored within the code for their class. So on reaching the opening
XML tag of a ⟨class⟩, we can:

Create a new symbol table for the class.

Add one entry for each variable in each ⟨classVarDec⟩, with separate offsets for
field and static variables. (The SymbolTable struct we provide supports this.)

Use this table while generating code for each ⟨subroutineDec⟩ after the
⟨classVarDec⟩s. (See later.)

Free the symbol table on reaching the ⟨class⟩ closing tag.

John Lapinskas Compiling Jack’s classes 5 / 11

The role of this: Implementing methods and constructors

How do we use our class symbol table to compile methods and constructors?

We at last use the this segment in Hack VM!

We will ensure that this 0 is always stored at the address pointed to by the current
object. If we can do this, then this[i] in Jack will always map to this i in Hack VM.

On compiling a ⟨subroutineCall⟩, we must:

For methods only: Push the current object onto the stack (and add it to the
symbol table) as a new first argument before compiling the ⟨expressionList⟩ for
the others. Adjust the VM call command generated accordingly.

Distinguish method calls from other subroutine calls by checking to see whether
the ‘.’ is present, and whether the identifier to its left is a variable.

On compiling a ⟨subroutineDec⟩, we must:

For methods: Set pointer 0 to argument 0.

For constructors: Call Memory.alloc to allocate a segment for a new object,
using the class symbol table to work out how much is needed. Then set pointer
0 to the base address.

For both: Avoid changing pointer 0 in the subroutine body!

John Lapinskas Compiling Jack’s classes 6 / 11

The role of this: Implementing methods and constructors

How do we use our class symbol table to compile methods and constructors?

We at last use the this segment in Hack VM!

We will ensure that this 0 is always stored at the address pointed to by the current
object. If we can do this, then this[i] in Jack will always map to this i in Hack VM.

On compiling a ⟨subroutineCall⟩, we must:

For methods only: Push the current object onto the stack (and add it to the
symbol table) as a new first argument before compiling the ⟨expressionList⟩ for
the others. Adjust the VM call command generated accordingly.

Distinguish method calls from other subroutine calls by checking to see whether
the ‘.’ is present, and whether the identifier to its left is a variable.

On compiling a ⟨subroutineDec⟩, we must:

For methods: Set pointer 0 to argument 0.

For constructors: Call Memory.alloc to allocate a segment for a new object,
using the class symbol table to work out how much is needed. Then set pointer
0 to the base address.

For both: Avoid changing pointer 0 in the subroutine body!

John Lapinskas Compiling Jack’s classes 6 / 11

The role of this: Implementing methods and constructors

How do we use our class symbol table to compile methods and constructors?

We at last use the this segment in Hack VM!

We will ensure that this 0 is always stored at the address pointed to by the current
object. If we can do this, then this[i] in Jack will always map to this i in Hack VM.

On compiling a ⟨subroutineCall⟩, we must:

For methods only: Push the current object onto the stack (and add it to the
symbol table) as a new first argument before compiling the ⟨expressionList⟩ for
the others. Adjust the VM call command generated accordingly.

Distinguish method calls from other subroutine calls by checking to see whether
the ‘.’ is present, and whether the identifier to its left is a variable.

On compiling a ⟨subroutineDec⟩, we must:

For methods: Set pointer 0 to argument 0.

For constructors: Call Memory.alloc to allocate a segment for a new object,
using the class symbol table to work out how much is needed. Then set pointer
0 to the base address.

For both: Avoid changing pointer 0 in the subroutine body!

John Lapinskas Compiling Jack’s classes 6 / 11

The role of this: Implementing methods and constructors

How do we use our class symbol table to compile methods and constructors?

We at last use the this segment in Hack VM!

We will ensure that this 0 is always stored at the address pointed to by the current
object. If we can do this, then this[i] in Jack will always map to this i in Hack VM.

On compiling a ⟨subroutineCall⟩, we must:

For methods only: Push the current object onto the stack (and add it to the
symbol table) as a new first argument before compiling the ⟨expressionList⟩ for
the others. Adjust the VM call command generated accordingly.

Distinguish method calls from other subroutine calls by checking to see whether
the ‘.’ is present, and whether the identifier to its left is a variable.

On compiling a ⟨subroutineDec⟩, we must:

For methods: Set pointer 0 to argument 0.

For constructors: Call Memory.alloc to allocate a segment for a new object,
using the class symbol table to work out how much is needed. Then set pointer
0 to the base address.

For both: Avoid changing pointer 0 in the subroutine body!

John Lapinskas Compiling Jack’s classes 6 / 11

A summary of subroutine behaviour

Function Constructor Method

Call syntax myClass.mySub(a,b)
myVar.mySub(a,b)

or mySub(a,b)

On call Normal behaviour Add myVar as argument 0

On start
Normal

behaviour
Set this base address

to new myClass variable
Set this base

address to myVar

In body
Normal

behaviour
myClassVar is read as this.myClassVar, and
myMethod(a) is read as this.myMethod(a)

On return Normal behaviour (constructors should always return this)

John Lapinskas Compiling Jack’s classes 7 / 11

Compiling ⟨term⟩s

⟨term⟩ ::= integer literal | string literal | ‘true’ | ‘false’ | ‘null’ | ‘this’ |
identifier, [‘[’, ⟨expression⟩, ‘]’] | ‘(’, ⟨expression⟩, ‘)’ |
((‘-’ | ‘~’), ⟨term⟩) | ⟨subroutineCall⟩;

In the compile term function, your goal should be to generate VM code that evaluates
the ⟨term⟩’s value and leaves it on top of the stack.

For example, if the ⟨term⟩ is the integer literal 85, then generate push constant 85. If
the ⟨term⟩ is an ⟨expression⟩ in ()s, call compile expression.

The hardest cases are when the ⟨term⟩ is an identifier or a string literal. If it’s an
identifier, look it up in the class and subroutine symbol tables:

If it’s an argument with offset i , push argument i.

If it’s a var with offset i , push local i.

If it’s a static with offset i , then push static i. Static variables are shared
across all objects of a class, so this is valid even in functions.

If it’s a field with offset i , then for this to be valid Jack code, we must be in a
method or constructor. In that case, it belongs to the current object, which is
always stored in this at pointer 0. Remember that objects are stored as arrays
in RAM, with the i ’th field in position i — so push this i will do the job.

If it appears in both the class and subroutine tables, prioritise the subroutine table.

John Lapinskas Compiling Jack’s classes 8 / 11

Compiling ⟨term⟩s

⟨term⟩ ::= integer literal | string literal | ‘true’ | ‘false’ | ‘null’ | ‘this’ |
identifier, [‘[’, ⟨expression⟩, ‘]’] | ‘(’, ⟨expression⟩, ‘)’ |
((‘-’ | ‘~’), ⟨term⟩) | ⟨subroutineCall⟩;

In the compile term function, your goal should be to generate VM code that evaluates
the ⟨term⟩’s value and leaves it on top of the stack.

For example, if the ⟨term⟩ is the integer literal 85, then generate push constant 85. If
the ⟨term⟩ is an ⟨expression⟩ in ()s, call compile expression.

The hardest cases are when the ⟨term⟩ is an identifier or a string literal. If it’s an
identifier, look it up in the class and subroutine symbol tables:

If it’s an argument with offset i , push argument i.

If it’s a var with offset i , push local i.

If it’s a static with offset i , then push static i. Static variables are shared
across all objects of a class, so this is valid even in functions.

If it’s a field with offset i , then for this to be valid Jack code, we must be in a
method or constructor. In that case, it belongs to the current object, which is
always stored in this at pointer 0. Remember that objects are stored as arrays
in RAM, with the i ’th field in position i — so push this i will do the job.

If it appears in both the class and subroutine tables, prioritise the subroutine table.

John Lapinskas Compiling Jack’s classes 8 / 11

Compiling ⟨term⟩s

⟨term⟩ ::= integer literal | string literal | ‘true’ | ‘false’ | ‘null’ | ‘this’ |
identifier, [‘[’, ⟨expression⟩, ‘]’] | ‘(’, ⟨expression⟩, ‘)’ |
((‘-’ | ‘~’), ⟨term⟩) | ⟨subroutineCall⟩;

In the compile term function, your goal should be to generate VM code that evaluates
the ⟨term⟩’s value and leaves it on top of the stack.

For example, if the ⟨term⟩ is the integer literal 85, then generate push constant 85. If
the ⟨term⟩ is an ⟨expression⟩ in ()s, call compile expression.

The hardest cases are when the ⟨term⟩ is an identifier or a string literal. If it’s an
identifier, look it up in the class and subroutine symbol tables:

If it’s an argument with offset i , push argument i.

If it’s a var with offset i , push local i.

If it’s a static with offset i , then push static i. Static variables are shared
across all objects of a class, so this is valid even in functions.

If it’s a field with offset i , then for this to be valid Jack code, we must be in a
method or constructor. In that case, it belongs to the current object, which is
always stored in this at pointer 0. Remember that objects are stored as arrays
in RAM, with the i ’th field in position i — so push this i will do the job.

If it appears in both the class and subroutine tables, prioritise the subroutine table.

John Lapinskas Compiling Jack’s classes 8 / 11

Compiling ⟨term⟩s

⟨term⟩ ::= integer literal | string literal | ‘true’ | ‘false’ | ‘null’ | ‘this’ |
identifier, [‘[’, ⟨expression⟩, ‘]’] | ‘(’, ⟨expression⟩, ‘)’ |
((‘-’ | ‘~’), ⟨term⟩) | ⟨subroutineCall⟩;

In the compile term function, your goal should be to generate VM code that evaluates
the ⟨term⟩’s value and leaves it on top of the stack.

For example, if the ⟨term⟩ is the integer literal 85, then generate push constant 85. If
the ⟨term⟩ is an ⟨expression⟩ in ()s, call compile expression.

The hardest cases are when the ⟨term⟩ is an identifier or a string literal. If it’s an
identifier, look it up in the class and subroutine symbol tables:

If it’s an argument with offset i , push argument i.

If it’s a var with offset i , push local i.

If it’s a static with offset i , then push static i. Static variables are shared
across all objects of a class, so this is valid even in functions.

If it’s a field with offset i , then for this to be valid Jack code, we must be in a
method or constructor. In that case, it belongs to the current object, which is
always stored in this at pointer 0. Remember that objects are stored as arrays
in RAM, with the i ’th field in position i — so push this i will do the job.

If it appears in both the class and subroutine tables, prioritise the subroutine table.

John Lapinskas Compiling Jack’s classes 8 / 11

Compiling ⟨term⟩s

⟨term⟩ ::= integer literal | string literal | ‘true’ | ‘false’ | ‘null’ | ‘this’ |
identifier, [‘[’, ⟨expression⟩, ‘]’] | ‘(’, ⟨expression⟩, ‘)’ |
((‘-’ | ‘~’), ⟨term⟩) | ⟨subroutineCall⟩;

In the compile term function, your goal should be to generate VM code that evaluates
the ⟨term⟩’s value and leaves it on top of the stack.

For example, if the ⟨term⟩ is the integer literal 85, then generate push constant 85. If
the ⟨term⟩ is an ⟨expression⟩ in ()s, call compile expression.

The hardest cases are when the ⟨term⟩ is an identifier or a string literal. If it’s an
identifier, look it up in the class and subroutine symbol tables:

If it’s an argument with offset i , push argument i.

If it’s a var with offset i , push local i.

If it’s a static with offset i , then push static i. Static variables are shared
across all objects of a class, so this is valid even in functions.

If it’s a field with offset i , then for this to be valid Jack code, we must be in a
method or constructor. In that case, it belongs to the current object, which is
always stored in this at pointer 0. Remember that objects are stored as arrays
in RAM, with the i ’th field in position i — so push this i will do the job.

If it appears in both the class and subroutine tables, prioritise the subroutine table.

John Lapinskas Compiling Jack’s classes 8 / 11

Compiling ⟨term⟩s

⟨term⟩ ::= integer literal | string literal | ‘true’ | ‘false’ | ‘null’ | ‘this’ |
identifier, [‘[’, ⟨expression⟩, ‘]’] | ‘(’, ⟨expression⟩, ‘)’ |
((‘-’ | ‘~’), ⟨term⟩) | ⟨subroutineCall⟩;

In the compile term function, your goal should be to generate VM code that evaluates
the ⟨term⟩’s value and leaves it on top of the stack.

For example, if the ⟨term⟩ is the integer literal 85, then generate push constant 85. If
the ⟨term⟩ is an ⟨expression⟩ in ()s, call compile expression.

The hardest cases are when the ⟨term⟩ is an identifier or a string literal. If it’s an
identifier, look it up in the class and subroutine symbol tables:

If it’s an argument with offset i , push argument i.

If it’s a var with offset i , push local i.

If it’s a static with offset i , then push static i. Static variables are shared
across all objects of a class, so this is valid even in functions.

If it’s a field with offset i , then for this to be valid Jack code, we must be in a
method or constructor. In that case, it belongs to the current object, which is
always stored in this at pointer 0. Remember that objects are stored as arrays
in RAM, with the i ’th field in position i — so push this i will do the job.

If it appears in both the class and subroutine tables, prioritise the subroutine table.
John Lapinskas Compiling Jack’s classes 8 / 11

String literals: The official way

If the ⟨term⟩ is a string literal, the official nand2tetris compilation method is:

Create a new String of the right maximum length with String.new.

Initialise the string to match the literal with calls to String.appendChar.

Converting from C chars to Hack VM integers to pass to String.

appendChar is easy, since the Hack character set aligns with ASCII
(see Nisan and Schocken Appendix 5) — so you can just cast to int.

Push the new String’s address onto the stack.

That solves the problem, right?

What happens when someone calls Output.printString("Uh-oh!") in a loop?
The code for the ⟨expression⟩ "Uh-oh!" gets run every single time... which
creates a new String each time... which is allocated on the heap before being
passed to Output.printString... and then is never freed.

“Hello, world!” in Jack has a memory leak!

John Lapinskas Compiling Jack’s classes 9 / 11

String literals: The official way

If the ⟨term⟩ is a string literal, the official nand2tetris compilation method is:

Create a new String of the right maximum length with String.new.

Initialise the string to match the literal with calls to String.appendChar.

Converting from C chars to Hack VM integers to pass to String.

appendChar is easy, since the Hack character set aligns with ASCII
(see Nisan and Schocken Appendix 5) — so you can just cast to int.

Push the new String’s address onto the stack.

That solves the problem, right?

What happens when someone calls Output.printString("Uh-oh!") in a loop?

The code for the ⟨expression⟩ "Uh-oh!" gets run every single time... which
creates a new String each time... which is allocated on the heap before being
passed to Output.printString... and then is never freed.

“Hello, world!” in Jack has a memory leak!

John Lapinskas Compiling Jack’s classes 9 / 11

String literals: The official way

If the ⟨term⟩ is a string literal, the official nand2tetris compilation method is:

Create a new String of the right maximum length with String.new.

Initialise the string to match the literal with calls to String.appendChar.

Converting from C chars to Hack VM integers to pass to String.

appendChar is easy, since the Hack character set aligns with ASCII
(see Nisan and Schocken Appendix 5) — so you can just cast to int.

Push the new String’s address onto the stack.

That solves the problem, right?

What happens when someone calls Output.printString("Uh-oh!") in a loop?
The code for the ⟨expression⟩ "Uh-oh!" gets run every single time...

which
creates a new String each time... which is allocated on the heap before being
passed to Output.printString... and then is never freed.

“Hello, world!” in Jack has a memory leak!

John Lapinskas Compiling Jack’s classes 9 / 11

String literals: The official way

If the ⟨term⟩ is a string literal, the official nand2tetris compilation method is:

Create a new String of the right maximum length with String.new.

Initialise the string to match the literal with calls to String.appendChar.

Converting from C chars to Hack VM integers to pass to String.

appendChar is easy, since the Hack character set aligns with ASCII
(see Nisan and Schocken Appendix 5) — so you can just cast to int.

Push the new String’s address onto the stack.

That solves the problem, right?

What happens when someone calls Output.printString("Uh-oh!") in a loop?
The code for the ⟨expression⟩ "Uh-oh!" gets run every single time... which
creates a new String each time...

which is allocated on the heap before being
passed to Output.printString... and then is never freed.

“Hello, world!” in Jack has a memory leak!

John Lapinskas Compiling Jack’s classes 9 / 11

String literals: The official way

If the ⟨term⟩ is a string literal, the official nand2tetris compilation method is:

Create a new String of the right maximum length with String.new.

Initialise the string to match the literal with calls to String.appendChar.

Converting from C chars to Hack VM integers to pass to String.

appendChar is easy, since the Hack character set aligns with ASCII
(see Nisan and Schocken Appendix 5) — so you can just cast to int.

Push the new String’s address onto the stack.

That solves the problem, right?

What happens when someone calls Output.printString("Uh-oh!") in a loop?
The code for the ⟨expression⟩ "Uh-oh!" gets run every single time... which
creates a new String each time... which is allocated on the heap before being
passed to Output.printString...

and then is never freed.

“Hello, world!” in Jack has a memory leak!

John Lapinskas Compiling Jack’s classes 9 / 11

String literals: The official way

If the ⟨term⟩ is a string literal, the official nand2tetris compilation method is:

Create a new String of the right maximum length with String.new.

Initialise the string to match the literal with calls to String.appendChar.

Converting from C chars to Hack VM integers to pass to String.

appendChar is easy, since the Hack character set aligns with ASCII
(see Nisan and Schocken Appendix 5) — so you can just cast to int.

Push the new String’s address onto the stack.

That solves the problem, right?

What happens when someone calls Output.printString("Uh-oh!") in a loop?
The code for the ⟨expression⟩ "Uh-oh!" gets run every single time... which
creates a new String each time... which is allocated on the heap before being
passed to Output.printString... and then is never freed.

“Hello, world!” in Jack has a memory leak!

John Lapinskas Compiling Jack’s classes 9 / 11

Should we fix this?

When we talk about “fixing string literals in Jack”, we should be clear
what we mean. In one sense, they aren’t broken. The language is behaving
as specified. If we free string literals automatically to prevent this sort of
memory leak, we will break existing Jack code (and the test scripts).

Source: xkcd 1172. Alt text: “There are probably children out there holding down spacebar to stay warm in the winter! YOUR
UPDATE MURDERS CHILDREN.”

John Lapinskas Compiling Jack’s classes 10 / 11

Should we fix this?

When we talk about “fixing string literals in Jack”, we should be clear
what we mean. In one sense, they aren’t broken. The language is behaving
as specified. If we free string literals automatically to prevent this sort of
memory leak, we will break existing Jack code (and the test scripts).

More seriously, we can see there’s no easy answer by looking at C.

char myString[] = "Hello, world!"; sets myString to a copy of the
string “Hello, world!” stored on the stack. It disappears on function return
and can be modified as normal until then.

John Lapinskas Compiling Jack’s classes 10 / 11

Should we fix this?

When we talk about “fixing string literals in Jack”, we should be clear
what we mean. In one sense, they aren’t broken. The language is behaving
as specified. If we free string literals automatically to prevent this sort of
memory leak, we will break existing Jack code (and the test scripts).

More seriously, we can see there’s no easy answer by looking at C.

char myString[] = "Hello, world!"; sets myString to a copy of the
string “Hello, world!” stored on the stack. It disappears on function return
and can be modified as normal until then.

So if you return myString; from a function that returns char *, it will
be left as a dangling pointer. Hmm.

John Lapinskas Compiling Jack’s classes 10 / 11

Should we fix this?

When we talk about “fixing string literals in Jack”, we should be clear
what we mean. In one sense, they aren’t broken. The language is behaving
as specified. If we free string literals automatically to prevent this sort of
memory leak, we will break existing Jack code (and the test scripts).

More seriously, we can see there’s no easy answer by looking at C.

char myString[] = "Hello, world!"; sets myString to a copy of the
string “Hello, world!” stored on the stack. It disappears on function return
and can be modified as normal until then.

So if you return myString; from a function that returns char *, it will
be left as a dangling pointer. Hmm.

Meanwhile char *myString = "Hello, world!"; creates, at the start
of program execution, a single static copy of the string “Hello, world!” in
memory. myString will then be initialised as a pointer to this copy.

John Lapinskas Compiling Jack’s classes 10 / 11

Should we fix this?

When we talk about “fixing string literals in Jack”, we should be clear
what we mean. In one sense, they aren’t broken. The language is behaving
as specified. If we free string literals automatically to prevent this sort of
memory leak, we will break existing Jack code (and the test scripts).

More seriously, we can see there’s no easy answer by looking at C.

char myString[] = "Hello, world!"; sets myString to a copy of the
string “Hello, world!” stored on the stack. It disappears on function return
and can be modified as normal until then.

So if you return myString; from a function that returns char *, it will
be left as a dangling pointer. Hmm.

Meanwhile char *myString = "Hello, world!"; creates, at the start
of program execution, a single static copy of the string “Hello, world!” in
memory. myString will then be initialised as a pointer to this copy.

So if you run myString[0] = ’J’;, you get a segfault. Oh dear.

John Lapinskas Compiling Jack’s classes 10 / 11

String literals: The unofficial version
All that said, here’s the Hack I came up with. First, modify the Jack grammar:

⟨term⟩ ::= integer literal | string literal | ‘true’ | ‘false’ | ‘null’ | ‘this’ |
identifier, [‘[’, ⟨expression⟩, ‘]’] | ‘(’, ⟨expression⟩, ‘)’ |
((‘-’ | ‘~’), ⟨term⟩) | ⟨subroutineCall⟩;

⟨letStatement⟩ ::= ‘let’, identifier, [‘[’, ⟨expression⟩, ‘]’], ‘=’, ⟨expression⟩, ‘;’ | string literal;

⟨expressionList⟩ ::= [(⟨expression⟩ | string literal), {‘,’, (⟨expression⟩ | string literal)}];

In compiling a ⟨letStatement⟩, use the official way. If someone is explicitly creating a
pointer to a string literal, it’s up to them to call String.dispose to free it later.

In compiling an ⟨expressionList⟩ as part of a ⟨subroutineCall⟩, though, we really should
automatically free the string.

John Lapinskas Compiling Jack’s classes 11 / 11

String literals: The unofficial version
All that said, here’s the Hack I came up with. First, modify the Jack grammar:

⟨term⟩ ::= integer literal | string literal | ‘true’ | ‘false’ | ‘null’ | ‘this’ |
identifier, [‘[’, ⟨expression⟩, ‘]’] | ‘(’, ⟨expression⟩, ‘)’ |
((‘-’ | ‘~’), ⟨term⟩) | ⟨subroutineCall⟩;

⟨letStatement⟩ ::= ‘let’, identifier, [‘[’, ⟨expression⟩, ‘]’], ‘=’, ⟨expression⟩, ‘;’ | string literal;

⟨expressionList⟩ ::= [(⟨expression⟩ | string literal), {‘,’, (⟨expression⟩ | string literal)}];

In compiling a ⟨letStatement⟩, use the official way. If someone is explicitly creating a
pointer to a string literal, it’s up to them to call String.dispose to free it later.

In compiling an ⟨expressionList⟩ as part of a ⟨subroutineCall⟩, though, we really should
automatically free the string.

John Lapinskas Compiling Jack’s classes 11 / 11

String literals: The unofficial version
All that said, here’s the Hack I came up with. First, modify the Jack grammar:

⟨term⟩ ::= integer literal | string literal | ‘true’ | ‘false’ | ‘null’ | ‘this’ |
identifier, [‘[’, ⟨expression⟩, ‘]’] | ‘(’, ⟨expression⟩, ‘)’ |
((‘-’ | ‘~’), ⟨term⟩) | ⟨subroutineCall⟩;

⟨letStatement⟩ ::= ‘let’, identifier, [‘[’, ⟨expression⟩, ‘]’], ‘=’, ⟨expression⟩, ‘;’ | string literal;

⟨expressionList⟩ ::= [(⟨expression⟩ | string literal), {‘,’, (⟨expression⟩ | string literal)}];

In compiling a ⟨letStatement⟩, use the official way. If someone is explicitly creating a
pointer to a string literal, it’s up to them to call String.dispose to free it later.

In compiling an ⟨expressionList⟩ as part of a ⟨subroutineCall⟩, though, we really should
automatically free the string.

John Lapinskas Compiling Jack’s classes 11 / 11

String literals: The unofficial version
All that said, here’s the Hack I came up with. First, modify the Jack grammar:

⟨term⟩ ::= integer literal | string literal | ‘true’ | ‘false’ | ‘null’ | ‘this’ |
identifier, [‘[’, ⟨expression⟩, ‘]’] | ‘(’, ⟨expression⟩, ‘)’ |
((‘-’ | ‘~’), ⟨term⟩) | ⟨subroutineCall⟩;

⟨letStatement⟩ ::= ‘let’, identifier, [‘[’, ⟨expression⟩, ‘]’], ‘=’, ⟨expression⟩, ‘;’ | string literal;

⟨expressionList⟩ ::= [(⟨expression⟩ | string literal), {‘,’, (⟨expression⟩ | string literal)}];

In compiling a ⟨letStatement⟩, use the official way. If someone is explicitly creating a
pointer to a string literal, it’s up to them to call String.dispose to free it later.

In compiling an ⟨expressionList⟩ as part of a ⟨subroutineCall⟩, though, we really should
automatically free the string.

Have compile expression list pass a list of string literal arguments back to
compile subroutine call.

John Lapinskas Compiling Jack’s classes 11 / 11

String literals: The unofficial version
All that said, here’s the Hack I came up with. First, modify the Jack grammar:

⟨term⟩ ::= integer literal | string literal | ‘true’ | ‘false’ | ‘null’ | ‘this’ |
identifier, [‘[’, ⟨expression⟩, ‘]’] | ‘(’, ⟨expression⟩, ‘)’ |
((‘-’ | ‘~’), ⟨term⟩) | ⟨subroutineCall⟩;

⟨letStatement⟩ ::= ‘let’, identifier, [‘[’, ⟨expression⟩, ‘]’], ‘=’, ⟨expression⟩, ‘;’ | string literal;

⟨expressionList⟩ ::= [(⟨expression⟩ | string literal), {‘,’, (⟨expression⟩ | string literal)}];

In compiling a ⟨letStatement⟩, use the official way. If someone is explicitly creating a
pointer to a string literal, it’s up to them to call String.dispose to free it later.

In compiling an ⟨expressionList⟩ as part of a ⟨subroutineCall⟩, though, we really should
automatically free the string.

Have compile expression list pass a list of string literal arguments back to
compile subroutine call.

After generating the VM call command, the function arguments will still be left
on the stack (above the current stack pointer).

John Lapinskas Compiling Jack’s classes 11 / 11

String literals: The unofficial version
All that said, here’s the Hack I came up with. First, modify the Jack grammar:

⟨term⟩ ::= integer literal | string literal | ‘true’ | ‘false’ | ‘null’ | ‘this’ |
identifier, [‘[’, ⟨expression⟩, ‘]’] | ‘(’, ⟨expression⟩, ‘)’ |
((‘-’ | ‘~’), ⟨term⟩) | ⟨subroutineCall⟩;

⟨letStatement⟩ ::= ‘let’, identifier, [‘[’, ⟨expression⟩, ‘]’], ‘=’, ⟨expression⟩, ‘;’ | string literal;

⟨expressionList⟩ ::= [(⟨expression⟩ | string literal), {‘,’, (⟨expression⟩ | string literal)}];

In compiling a ⟨letStatement⟩, use the official way. If someone is explicitly creating a
pointer to a string literal, it’s up to them to call String.dispose to free it later.

In compiling an ⟨expressionList⟩ as part of a ⟨subroutineCall⟩, though, we really should
automatically free the string.

Have compile expression list pass a list of string literal arguments back to
compile subroutine call.

After generating the VM call command, the function arguments will still be left
on the stack (above the current stack pointer).

Retrieve all the string literals and call String.dispose on them.

John Lapinskas Compiling Jack’s classes 11 / 11

String literals: The unofficial version
All that said, here’s the Hack I came up with. First, modify the Jack grammar:

⟨term⟩ ::= integer literal | string literal | ‘true’ | ‘false’ | ‘null’ | ‘this’ |
identifier, [‘[’, ⟨expression⟩, ‘]’] | ‘(’, ⟨expression⟩, ‘)’ |
((‘-’ | ‘~’), ⟨term⟩) | ⟨subroutineCall⟩;

⟨letStatement⟩ ::= ‘let’, identifier, [‘[’, ⟨expression⟩, ‘]’], ‘=’, ⟨expression⟩, ‘;’ | string literal;

⟨expressionList⟩ ::= [(⟨expression⟩ | string literal), {‘,’, (⟨expression⟩ | string literal)}];

In compiling a ⟨letStatement⟩, use the official way. If someone is explicitly creating a
pointer to a string literal, it’s up to them to call String.dispose to free it later.

In compiling an ⟨expressionList⟩ as part of a ⟨subroutineCall⟩, though, we really should
automatically free the string.

Have compile expression list pass a list of string literal arguments back to
compile subroutine call.

After generating the VM call command, the function arguments will still be left
on the stack (above the current stack pointer).

Retrieve all the string literals and call String.dispose on them.

Problem: The first function argument will be overwritten by the return value at the end
of the function call. (Even if the function is void!)

John Lapinskas Compiling Jack’s classes 11 / 11

String literals: The unofficial version
All that said, here’s the Hack I came up with. First, modify the Jack grammar:

⟨term⟩ ::= integer literal | string literal | ‘true’ | ‘false’ | ‘null’ | ‘this’ |
identifier, [‘[’, ⟨expression⟩, ‘]’] | ‘(’, ⟨expression⟩, ‘)’ |
((‘-’ | ‘~’), ⟨term⟩) | ⟨subroutineCall⟩;

⟨letStatement⟩ ::= ‘let’, identifier, [‘[’, ⟨expression⟩, ‘]’], ‘=’, ⟨expression⟩, ‘;’ | string literal;

⟨expressionList⟩ ::= [(⟨expression⟩ | string literal), {‘,’, (⟨expression⟩ | string literal)}];

In compiling a ⟨letStatement⟩, use the official way. If someone is explicitly creating a
pointer to a string literal, it’s up to them to call String.dispose to free it later.

In compiling an ⟨expressionList⟩ as part of a ⟨subroutineCall⟩, though, we really should
automatically free the string.

Have compile expression list pass a list of string literal arguments back to
compile subroutine call.

If the first argument is a string literal, push it onto the stack again as another
argument and increase the argument count of the call command appropriately.

After generating the VM call command, the function arguments will still be left
on the stack (above the current stack pointer).

Retrieve all the string literals and call String.dispose on them. If the first
argument is a string literal, call String.dispose on the last argument instead.

John Lapinskas Compiling Jack’s classes 11 / 11

