
Summing up and looking forward

John Lapinskas, University of Bristol

John Lapinskas Summing up and looking forward 1 / 4



Knowing what we don’t know

Here are some things we haven’t done:

Use an HDL like Verilog to specify far more complex circuitry with less
scope for input errors.

Learn a more advanced assembly language like MIPS and use it to build
something in a low-power environment.

Hardware capabilities: Advanced operations, interrupts, pipelining, caching.

An operating system with support for multiple processes.

Better compilers: Type checking, program verification, code optimisation.

More language features: True object-oriented programming, concurrency.

Internet connectivity: Twitch plays Tetris?

Any of these could be fine subjects for individual projects over summer!

The programming languages research group is a good place to go for
compiler-type projects, while the (systems) cybersecurity and HPC research
groups are good places to go for hardware- or OS-type projects.

John Lapinskas Summing up and looking forward 2 / 4



Knowing what we don’t know

Here are some things we haven’t done:

Use an HDL like Verilog to specify far more complex circuitry with less
scope for input errors.

Learn a more advanced assembly language like MIPS and use it to build
something in a low-power environment.

Hardware capabilities: Advanced operations, interrupts, pipelining, caching.

An operating system with support for multiple processes.

Better compilers: Type checking, program verification, code optimisation.

More language features: True object-oriented programming, concurrency.

Internet connectivity: Twitch plays Tetris?

Any of these could be fine subjects for individual projects over summer!

The programming languages research group is a good place to go for
compiler-type projects, while the (systems) cybersecurity and HPC research
groups are good places to go for hardware- or OS-type projects.

John Lapinskas Summing up and looking forward 2 / 4



Knowing what we don’t know

Here are some things we haven’t done:

Use an HDL like Verilog to specify far more complex circuitry with less
scope for input errors.

Learn a more advanced assembly language like MIPS and use it to build
something in a low-power environment.

Hardware capabilities: Advanced operations, interrupts, pipelining, caching.

An operating system with support for multiple processes.

Better compilers: Type checking, program verification, code optimisation.

More language features: True object-oriented programming, concurrency.

Internet connectivity: Twitch plays Tetris?

Any of these could be fine subjects for individual projects over summer!

The programming languages research group is a good place to go for
compiler-type projects, while the (systems) cybersecurity and HPC research
groups are good places to go for hardware- or OS-type projects.

John Lapinskas Summing up and looking forward 2 / 4



Knowing what we don’t know

Here are some things we haven’t done:

Use an HDL like Verilog to specify far more complex circuitry with less
scope for input errors.

Learn a more advanced assembly language like MIPS and use it to build
something in a low-power environment.

Hardware capabilities: Advanced operations, interrupts, pipelining, caching.

An operating system with support for multiple processes.

Better compilers: Type checking, program verification, code optimisation.

More language features: True object-oriented programming, concurrency.

Internet connectivity: Twitch plays Tetris?

Any of these could be fine subjects for individual projects over summer!

The programming languages research group is a good place to go for
compiler-type projects, while the (systems) cybersecurity and HPC research
groups are good places to go for hardware- or OS-type projects.

John Lapinskas Summing up and looking forward 2 / 4



Knowing what we don’t know

Here are some things we haven’t done:

Use an HDL like Verilog to specify far more complex circuitry with less
scope for input errors.

Learn a more advanced assembly language like MIPS and use it to build
something in a low-power environment.

Hardware capabilities: Advanced operations, interrupts, pipelining, caching.

An operating system with support for multiple processes.

Better compilers: Type checking, program verification, code optimisation.

More language features: True object-oriented programming, concurrency.

Internet connectivity: Twitch plays Tetris?

Any of these could be fine subjects for individual projects over summer!

The programming languages research group is a good place to go for
compiler-type projects, while the (systems) cybersecurity and HPC research
groups are good places to go for hardware- or OS-type projects.

John Lapinskas Summing up and looking forward 2 / 4



Knowing what we don’t know

Here are some things we haven’t done:

Use an HDL like Verilog to specify far more complex circuitry with less
scope for input errors.

Learn a more advanced assembly language like MIPS and use it to build
something in a low-power environment.

Hardware capabilities: Advanced operations, interrupts, pipelining, caching.

An operating system with support for multiple processes.

Better compilers: Type checking, program verification, code optimisation.

More language features: True object-oriented programming, concurrency.

Internet connectivity: Twitch plays Tetris?

Any of these could be fine subjects for individual projects over summer!

The programming languages research group is a good place to go for
compiler-type projects, while the (systems) cybersecurity and HPC research
groups are good places to go for hardware- or OS-type projects.

John Lapinskas Summing up and looking forward 2 / 4



Knowing what we don’t know

Here are some things we haven’t done:

Use an HDL like Verilog to specify far more complex circuitry with less
scope for input errors.

Learn a more advanced assembly language like MIPS and use it to build
something in a low-power environment.

Hardware capabilities: Advanced operations, interrupts, pipelining, caching.

An operating system with support for multiple processes.

Better compilers: Type checking, program verification, code optimisation.

More language features: True object-oriented programming, concurrency.

Internet connectivity: Twitch plays Tetris?

Any of these could be fine subjects for individual projects over summer!

The programming languages research group is a good place to go for
compiler-type projects, while the (systems) cybersecurity and HPC research
groups are good places to go for hardware- or OS-type projects.

John Lapinskas Summing up and looking forward 2 / 4



Knowing what we don’t know

Here are some things we haven’t done:

Use an HDL like Verilog to specify far more complex circuitry with less
scope for input errors.

Learn a more advanced assembly language like MIPS and use it to build
something in a low-power environment.

Hardware capabilities: Advanced operations, interrupts, pipelining, caching.

An operating system with support for multiple processes.

Better compilers: Type checking, program verification, code optimisation.

More language features: True object-oriented programming, concurrency.

Internet connectivity: Twitch plays Tetris?

Any of these could be fine subjects for individual projects over summer!

The programming languages research group is a good place to go for
compiler-type projects, while the (systems) cybersecurity and HPC research
groups are good places to go for hardware- or OS-type projects.

John Lapinskas Summing up and looking forward 2 / 4



What we’ve done

But let’s not lose sight of what we have done:

Compiled programs in a C-like language (Jack) into a stack machine:

Using a grammar and recursion to turn complex expressions into long
strings of postfix-form instructions.
Implementing user-defined types as pointer-based arrays.
Allocating and freeing memory on the heap with a non-leaky algorithm.
Managing variables in different scopes using symbol tables.
Rendering complex program flow statements like while loops into
simple gotos.

John Lapinskas Summing up and looking forward 3 / 4



What we’ve done

But let’s not lose sight of what we have done:

Compiled programs in a C-like language (Jack) into a stack machine:

Compiled programs from a stack machine into assembly language:

Implementing the stack itself in raw assembly.
Implementing function calls with the stack.
Mapping virtual memory segments back to physical memory in both
stack and heap.
Combining multiple files together into one to support libraries.

John Lapinskas Summing up and looking forward 3 / 4



What we’ve done

But let’s not lose sight of what we have done:

Compiled programs in a C-like language (Jack) into a stack machine:

Compiled programs from a stack machine into assembly language:

Compiled programs from assembly language into native machine code:

Mapping labels to ROM addresses ready to be jumped to.
Greedily allocating variables to designated areas of memory.
Using memory-mapped I/O to write to a screen and read from a
keyboard.
Understanding the instruction set itself and how it was designed.

John Lapinskas Summing up and looking forward 3 / 4



What we’ve done

But let’s not lose sight of what we have done:

Compiled programs in a C-like language (Jack) into a stack machine:

Compiled programs from a stack machine into assembly language:

Compiled programs from assembly language into native machine code:

Built the computer running that machine code from scratch:

Building R-S latches into D flip-flops into registers and memory.
Routing instructions between components with multiplexers and
demultiplexers.
Implementing complex arithmetic operations with simple gates.

Coming all the way back down to the humble NAND gate with the help of
truth tables and boolean algebra.

John Lapinskas Summing up and looking forward 3 / 4



Hack and Nand2Tetris

Remember these from the intro talk?

Source: Jayson Joseph (here)

Source: Alex Quach (here)

You could make these now. Truly from scratch.

Congratulations on making it through, and good luck in the exam!

John Lapinskas Summing up and looking forward 4 / 4

https://www.youtube.com/watch?v=Z-MRlpnzvJs
https://blog.alexqua.ch/posts/from-nand-to-raytracer/

