
COMSM1302 Overview of Computer Architecture University of Bristol

Week 11 assignment: Compiling Jack

1 Tasks
1. Extend the given skeleton into a full Jack parser.

2. Extend this parser into a compiler from Jack into Hack VM.

3. (Optional!) Combine this with your Hack VM translator and Hack assembler to create a full compiler from Jack
into Hack machine code.

2 Required software
For this lab, you will need some way of comparing two text files for differences. One way is to use the “fc” terminal
command on Windows or the “diff” terminal command on Linux and Mac OS. On non-lab non-Mac machines, you
can also use e.g. Meld, a piece of free open-source software with a nice graphical user interface.

3 Lexing and parsing with tag.c and tag.h
While lexing, we will store tokens in files as XML tag pairs <tokenType> tokenContents </tokenType>.
For example, the keyword token else is stored as <keyword> else </keyword>. The first tag, <keyword>,
is called the opening tag. The second tag, </keyword>, is called the closing tag. All tag pairs in XML must be of
this format, with tag names enclosed by <>s and with the closing tag starting with a /. Everything between the two
tags is referred to as the content — in this example, the content is else. The <, >, & and " symbols cannot be stored
directly as tag contents and must be escaped to >, <, & and " respectively.

To facilitate all this, we have modified token.c and token.h from weeks 8–10 into tag.c and tag.h. These
files provide the following facilities:

• A Tag struct. Similarly to tokens, a Tag contains a type (which is an enum JackTagType) and data (which
is a union TagData and stores the contents).

• Functions malloc tag and free tag to create and dispose of Tags in a memory-safe way.

• Functions read tag and write tag to read tokens from and write tokens to a file as XML tag pairs.

In parsing, we will store non-terminal elements in XML format. All children of the non-terminal in the parse tree
appear as contents of the tag, as seen in video 11-2. tag.c and tag.h support reading and writing open and close
tags of non-terminal elements separately as follows:

• Non-terminal open and close tags have a special JackTagType, namely NON TERMINAL.

• The data of a non-terminal open or close tag is an enum NonTerminal which specifies the type of non-
terminal.

• A Tag has a close tag field which is true for a closing non-terminal tag, false for an opening non-terminal
tag, and ignored for a token’s tag pair.

• The functions read tag and write tag both work for non-terminals in the way you’d expect. They also
indent the file in a smart way.

We have also provided some helper functions that will be particularly useful in parsing with Tag pointers current
and lookahead as in video 11-2:

• advance tag reads the next token from the input file, advancing current and lookahead accordingly

• copy tag copies current from the input file to the output file, then calls advance tag.

• write non terminal writes an opening or closing XML tag for the given non-terminal to the output file
without changing the value of current or lookahead. It’s really just a wrapper for write tag that handles
creating the Tag instance from the given data.

1

https://meldmerge.org/

COMSM1302 Overview of Computer Architecture University of Bristol

4 Part 1: Parsing Jack
The first part of getting a working Jack compiler is lexing and parsing a .jack file into a .vm file. The first command
line argument should be the input file, and second argument should be the output file. We’ve provided a code skeleton
with the following functionality:

• main first lexes the file into output lex out.xml using the (fully-implemented) function lex file, then
calls the (partially-implemented) parse file function with a file input of lex out.xml and an output of
parse out.xml. Finally, it calls the (unimplemented) compile file function with an input of parse out.xml
to generate the final output.

• parse file starts by setting up current and lookahead as in video 11-2. Annoyingly, the list of tokens
should start with a special <tokens> tag to conform to the XML standards — parse file skips this with
a call to advance tag. A .jack file should consist of a single ⟨class⟩, so it then calls the parse class
function. On return, the entire token file should be parsed and current should be pointing to the special
</tokens> tag at the end, so parse file handles cleanup and closes.

• For the parser as described in video 11-2, each non-terminal should have a dedicated parse function. We have
provided the parse class and parse class var dec functions as worked examples.

You will need to create parse *** functions for the other non-terminals in the grammar of video 11-2 (except
for ⟨type⟩ as described in that video). Each function should have arguments of current, lookahead, input and
output as in the headers provided. You may find the following tips useful:

• You do not need to carry out careful (or indeed any!) error checking on the provided Jack code.

• As described in video 11-2, you’ll probably only need to use the value of lookahead once, inside the
parse term function.

• In order to match the test data exactly, you will need to suppress the ⟨type⟩ and ⟨parameterList⟩ non-terminals
from your output (i.e. don’t write open or close tags for it to the output). You will also need to suppress the
⟨subroutineDec⟩ non-terminal; that said, we strongly recommend you do have a parse subroutine dec
function, as having <subroutineDec> and </subroutineDec> tags will be useful in code generation.1

• If you’re unsure about whether or not something is valid Jack, while your first port of call should be the official
grammar, you can always fire up the existing Jack compiler to check! It’s available for download from the
nand2tetris site, or it’s now included in the bundle of software from the unit page.

5 Testing your parser
You’ll be using the test scripts from the original nand2tetris course (available from the unit page). These are as follows:

• ExpressionLessSquare is a nonsense Jack program in which every expression has been replaced with a
single identifier, and there are no array subscripts.

• Square is the “real” version of ExpressionLessSquare. It’s discussed in more depth in chapter 9 of
Nisan and Schocken, and is essentially a Jack version of the Rogue exercise from week 5. It does not require
any array subscripts.

• ArrayTest is the example program used in video 11-1, using both expressions and array subscripts.

All three tests come with come with two XML files per Jack file: foo.xml and fooT.xml. In each case, foo.xml
is the desired output of your parser when run on foo.jack, and fooT.xml is the desired output of your lexer.
In each case, you should run your parser on all files foo.jack and compare the outputs to the corresponding files
foo.xml using fc, diff, or Meld. You hopefully won’t need fooT.xml, but we’ve included it to check against our
lexer output in case you want to rule out bugs there.

1Basically, because the original nand2tetris assignment assumes students will be working in a more pleasant language than C, they leave people
to implement the parser from scratch rather than using a comparatively robust framework like this one. Putting the <subroutineDec> tags in
the right place is tricky without a robust framework, so they recommend people don’t bother. For us this shouldn’t be an issue.

2

COMSM1302 Overview of Computer Architecture University of Bristol

6 Part 2: Semantic analysis and code generation
In this part you’ll be extending your Jack parser into a full compiler. In symboltable.c and symboltable.h,
we’ve extended the symbol tables from the week 8 assignment (the Hack assembler) with the following functionality:

• The TableEntry struct now contains type and kind field in addition to the name field, and the old
address field has been renamed to offset. type is a string. kind is an enum of type VariableKind,
and distinguishes between local, argument, field and static variables. The basic functionality remains the same
— it’s just a data container.

• The functions malloc table, free table, and get table entry functions are unchanged.

• The add to table now requires a type and a kind in addition to a name. In addition, the auto-generated
offset for a table entry now only increments for other entries of the same kind. For example, adding an
entry of kind VK VAR to a table with three VK VAR entries and ten VK ARGUMENT entries will give it an offset
of 3 (as the fourth VK VAR entry), not 14 (as the fourteenth entry).

• The new function is primitive returns true if the given table entry is of type int, char or boolean.

We’ve also provided a CompileData struct to reduce the number of arguments that need to be passed around,
which is initialised in the compile file function provided. We have also given you the compile class function
to get you started. You should write the rest of the compile *** functions as described in the videos this week —
we’ve provided suggested function headers and functionality for each one. You may find the following tips useful:

• Remember that the Hack character set agrees with ASCII except on special characters. This means that when
compiling string literals, you can cast from char to int or use sprintf rather than needing to write a lookup
table with 50+ entries.

• In the VM emulator, when the emulator is set to “No animation” for fast running, the animation speed slider
controls clock speed. This is extremely helpful for test scripts like Square or Pong.

• In the VM Emulator, you can set breakpoints for every time the code enters a given function using the “cur-
rentFunction” variable. This is an easy way of skipping past calls to library functions (which will always work
correctly).

• In the VM emulator, if your program crashes, you can see the call stack with a list of all the functions called in
order at the bottom left of the window.

• In general, if the Jack code provided isn’t compiling correctly, don’t be afraid to write your own Jack code with
a “minimal failing example” and get that working in the VM emulator first.

7 Testing your compiler
You’ll again be using the test scripts from the original nand2tetris course (available from the unit page). After com-
piling, run each one in the VM emulator, making sure to load the whole folder, and check their behaviour is correct.
(This also contains the standard libraries, which many of them use.) The scripts are as follows:

• Seven just prints 7 to the screen.

• ConvertToBin converts the value in RAM[8000] to binary and outputs it to RAM[8001]–RAM[8016], from
least significant bit to most significant bit (so it will appear in reverse order in the memory viewer). Remember
you can use the binoculars icon in the VM emulator to quickly jump to a given memory address.

• Square draws a square on the screen, which you can control with the arrow keys. You can increase the square
size by pressing ‘z’ and decrease it by pressing ‘x’ as long as the square is either moving or in the top-left
corner — otherwise, nothing will happen. Pressing the ‘q’ key will “quit”, which doesn’t visibly alter the screen
but does prevent any response to further input.

3

COMSM1302 Overview of Computer Architecture University of Bristol

• Average is the program from the first video this week with some minor changes. If you’re having trouble
debugging this one, I strongly recommend reducing the lengths of the string literals in the Keyboard.readInt
calls to make it faster to get back to the point that’s having issues.

• Pong is a one-player implementation of Pong, complete with a score (one point per hit), a bat that shrinks with
each point, and a game over screen.

• ComplexArrays runs some tests on tricky array expressions and prints both the expected and the actual
results — these should match.

4

	Tasks
	Required software
	Lexing and parsing with tag.c and tag.h
	Part 1: Parsing Jack
	Testing your parser
	Part 2: Semantic analysis and code generation
	Testing your compiler

