BINARY ADDITION

Kira Clements, University of Bristol

WHAT IS 1+1?

Going back to basics of addition, what are the possible results for adding two single-digit bits?

Each input must either be 0 or 1 while the three possible outputs are 0, 1, and 2 (0b00, 0b01, 0b10).

This gives us the equivalent of 2 single-bit outputs: the Sum (S) and the Carry (C).

HALF ADDER

If we define these two output bits as C (Carry), which represents the decimal value 2¹, and S (Sum), which represents the value 2^0 , we get the following truth table:

Revisiting logical operators, which will output the same values as S and C?

$C = A \wedge B$, $S = A \oplus B$

Using these logical expression for the Sum and Carry, we can now add 2 single-bit signals together, but how do we extend this to add multiple bits together?

ADDING MORE DIGITS

Decimal and binary addition both use a carry value to determine the value of the next outputs.

We start with adding the right-most digit (LSB or bit number 0 for binary addition) and use the carry from this addition to calculate the outputs immediate to its left (bit number 1 for binary addition).

FULL ADDER

When adding more than single digits, we need to be able to include a **third input in the addition**, *C_in*, which extends our previous half adder truth table:

The half adder and full adder get their names from the fact that a full adder can (roughly) be created from 2 half adders where the first would calculate A+B and the second would calculate S+C_in.

FULL ADDER FORMULA

From the Karnaugh map for the Sum output (or straight from its truth table using DNF), we can find the following formula:

(C_in ∧ ¬A ∧ ¬B) ∨ (¬C_in ∧ ¬A ∧ B) ∨ (C_in ∧ A ∧ B) ∨ (¬C_in ∧ A ∧ ¬B)

Though this is the simplest form using just $[\neg, \wedge, \vee]$, this can also be written as:

A ⊕ B ⊕ C_in

XOR for multiple argument is true when an odd number of its inputs are true

FULL ADDER FORMULA

From the Karnaugh map for the Carry out output we can find the following formula:

(C_in ∧ B) ∨ (A ∧ B) ∨ (C_in ∧ A)

Using distributivity, this formula is logically equivalent to $(A \land B) \lor (C_{\text{min}} \land (A \lor B))$, which is also logically equivalent to **(A** ∧ **B)** ∨ **(C_in** ∧ **(A** ⊕ **B))**… Why?

> Preferred formula in this situation, as $A \oplus B$ is a signal that can be copied from the Sum circuit

ANOTHER BUILDING BLOCK

Now we've gone from adding 2 bits (A, B) to adding 3 bits (A, B, C_in), we can look at connecting these building blocks to add numbers with more than one bit each!

This is known as a **ripple carry adder**, where the C_out signal of each full adder is the C_in signal of the next full adder. It's named this as the carry signal generated from the LSB can affect the result of any/all of the more significant bits.