
Kira Clements, University of Bristol

BINARY 
ADDITION



WHAT IS 1+1?
Going back to basics of addition, what are the possible results for adding two single-digit bits?

A B Decimal Sum

0 0 0

0 1 1

1 0 1

1 1 2

A B Binary Sum

0 0 0

0 1 1

1 0 1

1 1 10

Each input must either be 0 or 1 while the three possible outputs are 

0, 1, and 2 (0b00, 0b01, 0b10).

This gives us the equivalent of 2 single-bit outputs: the Sum (S) and the Carry (C).



HALF ADDER
If we define these two output bits as C (Carry), which represents the decimal value 21, and S (Sum), 

which represents the value 20, we get the following truth table:

A B C (21) S (20)

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Revisiting logical operators, which will output the same values as S and C?

C = A ∧ B, S = A ⊕ B

Using these logical expression for the Sum and Carry, we can now add 2 single-bit signals together, 

but how do we extend this to add multiple bits together?

Same outputs as the 

truth table for AND

Same outputs as the 

truth table for XOR



ADDING MORE DIGITS
Decimal and binary addition both use a carry value to determine the value of the next outputs.

We start with adding the right-most digit (LSB or bit number 0 for binary addition) and use the carry 

from this addition to calculate the outputs immediate to its left (bit number 1 for binary addition).

Decimal addition

A 9

B 1 3 +

Sum 2 2

Carry 1

Binary addition

A 1 0 0 1

B 1 1 0 1 +

Sum 1 0 1 1 0

Carry 1 0 0 1

This is considered an overflow as we are 

currently using 4-bit numbers. Though this is 

currently ignored, we will revisit!



FULL ADDER
When adding more than single digits, we need to be able to include a third input in the addition, 

C_in, which extends our previous half adder truth table: 

The half adder and full adder get their names from the fact that a full adder can (roughly) be created 

from 2 half adders where the first would calculate A+B and the second would calculate S+C_in.

C_in A B C_out S

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1



FULL ADDER FORMULA

From the Karnaugh map for the Sum output (or straight from its truth table using DNF), we can find 

the following formula:

(C_in ∧ ¬A ∧ ¬B) ∨ (¬C_in ∧ ¬A ∧ B) ∨ (C_in ∧ A ∧ B) ∨ (¬C_in ∧ A ∧ ¬B)

Though this is the simplest form using just [¬, ∧, ∨], this can also be written as:

A ⊕ B ⊕ C_in

AB\C_in 0 1

00 0 1

01 1 0

11 0 1

10 1 0

C_in A B Sum

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

XOR for multiple argument is true when an 

odd number of its inputs are true



FULL ADDER FORMULA

From the Karnaugh map for the Carry out output we can find the following formula:

(C_in ∧ B) ∨ (A ∧ B) ∨ (C_in ∧ A) 

Using distributivity, this formula is logically equivalent to (A ∧ B) ∨ (C_in ∧ (A ∨ B)), which is also 

logically equivalent to (A ∧ B) ∨ (C_in ∧ (A ⊕ B))… Why?

AB\C_in 0 1

00 0 0

01 0 1

11 1 1

10 0 1

C_in A B C_out

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Preferred formula in this situation, as A ⊕ B is a signal 

that can be copied from the Sum circuit



ANOTHER BUILDING BLOCK

Now we’ve gone from adding 2 bits (A, B) to adding 3 bits (A, 

B, C_in), we can look at connecting these building blocks to 

add numbers with more than one bit each!

A A3 A2 A1 A0

B B3 B2 B1 B0 +

Sum S3 S2 S1 S0

Carry C2 C1 C0

This is known as a ripple carry adder, where the C_out signal 

of each full adder is the C_in signal of the next full adder. It’s 

named this as the carry signal generated from the LSB can 

affect the result of any/all of the more significant bits.

Notice that bit 

numbering goes 

right to left, in order 

that the addition 

takes place


	Slide 1
	Slide 2: What is 1+1?
	Slide 3: Half adder
	Slide 4: Adding More digits
	Slide 5: Full adder
	Slide 6: Full adder formula
	Slide 7: Full adder formula
	Slide 8: Another building block

