BINARY ADDITION

Kira Clements, University of Bristol

WHAT IS 1+1?

Going back to basics of addition, what are the possible results for adding two single-digit bits?

Α	В	Decimal Sum	Α	В	Binary Sum
0	0	0	0	0	0
0	1	1	0	1	1
1	0	1	1	0	1
1	1	2	1	1	10

Each input must either be 0 or 1 while the three possible outputs are 0, 1, and 2 (0b00, 0b01, 0b10).

This gives us the equivalent of 2 single-bit outputs: the Sum (S) and the Carry (C).

HALF ADDER

If we define these two output bits as C (Carry), which represents the decimal value 2¹, and S (Sum), which represents the value 2⁰, we get the following truth table:

Revisiting logical operators, which will output the same values as S and C?

 $C = A \land B, S = A \oplus B$

Using these logical expression for the Sum and Carry, we can now add 2 single-bit signals together, but how do we extend this to add multiple bits together?

ADDING MORE DIGITS

Decimal and binary addition both use a carry value to determine the value of the next outputs.

We start with adding the right-most digit (LSB or bit number 0 for binary addition) and use the carry from this addition to calculate the outputs immediate to its left (bit number 1 for binary addition).

Decimal addition					Binary addition							
Α		9			Α		1	0	0	1		
В	1	3	+		В		1	1	0	1	+	
Sum	2	2			Sum	1	0	1	1	0		
Carry	1				Carry	1	0	0	1			
	This is considered an overflow as we are currently using 4-bit numbers. Though this is currently ignored, we will revisit!											

FULL ADDER

When adding more than single digits, we need to be able to include a **third input in the addition**, *C_in*, which extends our previous half adder truth table:

C_in	Α	В	C_out	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

The half adder and full adder get their names from the fact that a full adder can (roughly) be created from 2 half adders where the first would calculate A+B and the second would calculate S+C_in.

FULL ADDER FORMULA

C_in	Α	В	Sum			4
0	0	0	0	AB\C_in	0	1
0	0	1	1	00	0	
0	1	0	1	00		
0	1	1	0	01	1	0
1	0	0	1			
1	0	1	0	11	0	
1	1	0	0	10		
1	1	1	1	10		0

From the Karnaugh map for the Sum output (or straight from its truth table using DNF), we can find the following formula:

 $(C_in \land \neg A \land \neg B) \lor (\neg C_in \land \neg A \land B) \lor (C_in \land A \land B) \lor (\neg C_in \land A \land \neg B)$

Though this is the simplest form using just $[\neg, \land, \lor]$, this can also be written as:

 $A \oplus B \oplus C_in$

XOR for multiple argument is true when an odd number of its inputs are true

FULL ADDER FORMULA

C_in	Α	В	C_out				
0	0	0	0	AB\C_in	0	1	
0	0	1	0	<u> </u>	0	0	
0	1	0	0	00	0	0	
0	1	1	1	01	0		
1	0	0	0				
1	0	1	1	11	1	1	
1	1	0	1		0		
1	1	1	1	10			

From the Karnaugh map for the Carry out output we can find the following formula:

(C_in \land B) \lor (A \land B) \lor (C_in \land A)

Using distributivity, this formula is logically equivalent to $(A \land B) \lor (C_in \land (A \lor B))$, which is also logically equivalent to $(A \land B) \lor (C_in \land (A \oplus B))$... Why?

Preferred formula in this situation, as $A \oplus B$ is a signal that can be copied from the Sum circuit

ANOTHER BUILDING BLOCK

Now we've gone from adding 2 bits (A, B) to adding 3 bits (A, B, C_in), we can look at connecting these building blocks to add numbers with more than one bit each!

Α	A3	A2	A1	A0		Notice that bit
В	B3	B2	B1	B0	+	numbering goes right to left, in order that the addition
Sum	S 3	S2	S1	S0		takes place
Carry	C 2	C 1	CO			

This is known as a **ripple carry adder**, where the C_out signal of each full adder is the C_in signal of the next full adder. It's named this as the carry signal generated from the LSB can affect the result of any/all of the more significant bits.