
Kira Clements, University of Bristol

BINARY 
SUBTRACTION



WHAT IS SUBTRACTION?
Subtraction is easy if we think of it as adding one number to a negative number:

This means we can utilise the adder hardware we’ve already created, at no extra cost!

The only difference is we need a binary representation for signed numbers, and luckily three 

commonly used options for such representation exist:

A - B ≡ A + (-B)
Subtraction is equivalent to 

addition with a negative value.

Sign-magnitude 1’s complement 2’s complement



SIGN-MAGNITUDE
Signed magnitude representation is the first option for representing signed numbers in binary. This 

represents value the same way unsigned binary does, except the MSB represents the sign 

instead of a number:

Using 4 bits in signed magnitude representation, we can represent numbers +7 to -7. However, we 

know that a 4-bit binary number can represent 16 (24) values, and this is only 15 numbers…

The flaw with this system of representing signed numbers is that 2 options exist for representing 0:

- 22 21 20 Decimal result

0 0 0 1

0 1 0 1

1 1 0 0

1 0 1 1

20 = 1

22 + 20 = 4 + 1 = 5

-(22) = -4

-(21 + 20) = -(2 + 1) = -3

00002 = +010 10002 = -010



1’S COMPLEMENT
1’s complement is another option for representing signed numbers in binary, which defines a 

negative number to be the complement of the binary number of its positive equivalent. This is the 

same as flipping each of the 0s to 1s and vice versa. The 4-bit representation is shown here:

Decimal 0 1 2 3 4 5 6 7

Binary 0000 0001 0010 0011 0100 0101 0110 0111

Decimal -7 -6 -5 -4 -3 -2 -1 -0

Binary 1000 1001 1010 1011 1100 1101 1110 1111

The issue still appears that we have two representations for expressing 0, meaning this system is 

not making use of the full range of numbers it could be representing.

Furthermore, arithmetic isn’t consistent around this point, as if we were to add 1 to 1111, we would 

get 0000 (with an overflow) which still represents 0 in decimal.



2’S COMPLEMENT
Instead, 2’s complement is the binary representation most modern computers now use. This defines 

the MSB still as a signed bit, like with signed magnitude representation, but this but now also has 

a weight attached.

We can now represent numbers +7 to -8 using 4 bits as there is now only one way for representing 0! 

This is one more possible value than sign-magnitude or 1’s complement, taking full use of the whole 

range that a 4-bit binary number can express.

You might notice that positive numbers are represented the same as in unsigned binary, but it’s 

important to pad with at least one 0 as the MSB will represent a negative value.

-23 22 21 20 Decimal result

0 0 0 1

0 1 0 1

1 1 0 0

1 0 1 1

20 = 1

22 + 20 = 4 + 1 = 5

-(23) + 22 = -8 + 4 = -4

-(23) + 21 + 20 = -8 + 2 + 1 = -5



2’S COMPLEMENT
To convert a binary number to its negative value using 2’s complement, we simply find the 

complement (the 1’s complement) and then add 1!

For example, the process to find the 2’s complement binary representation of the decimal number -7:

Firstly, we need to identify the minimum number of bits needed to represent this number. As the 

range of a N-bit 2’s complement number is +(2N-1-1) to -(2N-1), we must use at least 4 bits.

Unsigned 0 1 1 1

Flip all bits

1’s complement 1 0 0 0

Add 1

2’s complement 1 0 0 1



SUBTRACTING
Now we have a method for adding two numbers, as well as representing a negative number, we 

can subtract one number from another!

A - B ≡ A + (-B) A - B ≡ A + (NOT(B) + 1)

To alter our adder circuit to enable subtraction with the same architecture, we can use NOT 

gates to flip bits and the unused C_in input on the first full adder unit in the ripple carry 

adder allows us to add 1!

To make a functional adder-subtractor we simply need a method of choosing whether to 

NOT B’s input and add one to the first adder unit.

A 0 0 1 1

NOT(B) + 1 1 0 0 1 +

Sum 1 1 0 0

Carry 1 1

Sum = -(23) + 22 = -4

A = 3 = 00112

B = 7 = 01112



OVERFLOW
Previously, the overflow bit was simply ignored while adding numbers, but we can now see this now 

serves an important purpose. When adding binary numbers using 2’s complement representation, 

the overflow is used to help determine whether the result is correct after the extra bit is discarded.

In both the above examples, we are working in 4-bit binary numbers so bit number 4 of the 

result must be discarded. However, this changes the sign of the result!

This will flag an overflow error, indicating you have either added two positives and found a 
(incorrect) negative result, or vice versa.

6 + 5 = -5?

A 0 1 1 0

B 0 1 0 1 +

Sum 0 1 0 1 1

Carry 1

-7 + -2 = 7?

A 1 0 0 1

B 1 1 1 0 +

Sum 1 0 1 1 1

Carry 1



FIXED-POINT NUMBERS
With integers we lose precision as we cannot represent anything that’s not a whole number. Fixed-

point representation is an option for representing fractional numbers that is similar to binary, except 

some of the bits represent the fraction (still in powers of 2).

Notation 21 20 2-1 2-2 Decimal result

00.01 0 0 0 1

01.01 0 1 0 1

11.00 1 1 0 0

10.11 1 0 1 1

2-2 = 0.25

20 + 2-2 = 1 + 0.25 = 1.25

21 + 20 = 2 + 1 = 3

21 + 2-1 + 2-2 = 2 + 0.5 + 0.25 = 2.75

Location of decimal point is determined by deciding the range (maximum and minimum 

values) and precision (increments between values) required. As we can see from the 

table, 2 integer bits and 2 fractional bits only lets us represent values between 0 to 3.75, 

but in increments of 0.25.

We can also have a fixed-point number that uses 2’s complement (MSB represents a 

negative value) if we want negative fractional numbers.



FLOATING-POINT NUMBERS
Floating-point is a more flexible fractional representation as it doesn’t require the number of integer 

and fractional bits to be determined in advance. Instead, it uses the following formula:

(−1)𝑆∙ 𝑀 ∙ 𝐵𝐸 S = Sign, M = Mantissa,
B= Base, E = Exponent

This representation uses a biased exponent (adds a bias so that negative exponents are also 

stored as a positive value) and a normalised mantissa (doesn’t store an implicit leading 1).

The most common floating-point precision is defined by the IEEE 754 technical standard, which 

also defines how special values like infinity and NaN are be represented.

What does this look like in practise?



Sign Biased exponent Normalised mantissa
Decimal result

- 22 21 20 2-1 2-2 2-3 2-4

0 1 0 0 0 0 0 1

1 0 1 0 0 1 0 0

FLOATING-POINT NUMBERS
We first decide on our precision, for this example let’s use S(1), E(3), and M(4).

To store a decimal value, we convert the number into binary like for fixed-point numbers:

2.12510 = 10.0012 (sign = 0) and -0.62510 = 0.1012 (sign = 1)

We then normalise these binary numbers, so that they have a single leading 1 before the point:

10.0012 = 1.00012 ∙ 2
1 and 0.1012 = 1.012 ∙ 2

-1 

These normalised numbers can then be converted into floating-point notation as follows:

For a 3-bit exponent, the bias is 3, so that exponents -3 to 4 can be 

represented as 0 to 7 e.g. biased exponent of 2 = exponent of -1.

(-1)0 ∙ (20 + 2-4) ∙ 2(4-3) = 2.125

(-1)1 ∙ (20 + 2-2) ∙ 2(2-3) = -0.625

The implicit 1 isn’t stored.


	Slide 1
	Slide 2: What is subtraction?
	Slide 3: Sign-magnitude
	Slide 4: 1’s complement
	Slide 5: 2’s complement
	Slide 6: 2’s complement
	Slide 7: Subtracting
	Slide 8: Overflow
	Slide 9: Fixed-point Numbers
	Slide 10: Floating-point Numbers
	Slide 11: Floating-point Numbers

