
Kira Clements, University of Bristol

ARITHMETIC
LOGIC UNIT

ALU
A central part of the CPU; the ALU takes in 2 N-bit inputs, x and y, performs a function, f,

between them, and outputs the N-bit result, f(x, y). The operation is one of a set of predefined

operations that may be logical or arithmetic.

The ALU operates logical functions bitwise e.g. out0 = x0 AND y0, out1 = x1 AND y1,

while arithmetic functions operate using a carry between each bit.

[xN-1 … x1 x0]

[yN-1 … y1 y0]

Data buses (arrays of

bits) are used to send

signals with more

information

[outN-1 … out1 out0]
x

y

f(x, y)

f

ALU

CONTROL BITS
How does an ALU decide which function is calculated?

An ALU uses control bits, also known as select bits, to make decisions within the unit. Looking at

the Hack ALU, we can see that it uses 6 control bits that each decide between 2 options:

Hack

ALU
out(16-bits)

zx nx zy ny f no

y (16-bits)

x (16-bits)

zx: whether to ZERO the x signal

zy: whether to ZERO the y signal

nx: whether to NOT the x signal

ny: whether to NOT the y signal

f: whether to ADD or AND the input

signals

no: whether to NOT the out signal

MULTIPLEXERS
A N-to-1 multiplexer takes in N inputs and uses a control signal to select which of these to

propagate to the output. We need log2(N) select bits to choose between N inputs, as this

gives us X where 2X = N.

MUX

input0

input1

select

output

A 2-to-1 multiplexer, like that pictured above, has a single select bit. If this bit is set to 0 then the

multiplexer will output the value of input0. Else, if this select bit is set to 1, then the multiplexer will

output the value of input1.

if select == 0, then

output = input0

else, output = input1

DEMULTIPLEXERS
On the other hand, we have 1-to-N demultiplexers, which take in 1 input and propagates this

signal onto one of N output wires, determined by the control signal. Any output signal not

selected will output 0. Again, we need log2(N) select bits to choose between N outputs, as this

gives us X where 2X = N.

MUXinput
output0

select

output1

if select == 0, then

output0 = input

else, output1 = input

A 1-to-2 demultiplexer, like that pictured above, has a single select bit. If this bit is set to 0 then the

demultiplexer will propagate the value of input onto the output0 signal. Else, if this select bit is set to

1, then the demultiplexer will propagate the value of input into the output1 signal.

HACK ALU
The Hack ALU takes in two inputs with 2’s complement values using 16-bit data buses and

outputs a resulting 2’s complement value using a 16-bit data bus.

Setting the control bits to one of the combinations defined in the below truth table will result

in the ALU calculating the function listed in the out column. This is a reduced version of the

complete ALU truth table, which list further functions possible given different combinations of

control bits.

Hack

ALU
out(16-bits)

zx nx zy ny f no

y (16-bits)

x (16-bits)

zx nx zy ny f no out

1 1 1 1 1 1 1

1 1 1 0 1 0 -1

0 0 0 0 1 0 x+y

0 1 0 0 1 1 x-y

0 0 0 0 0 0 x&y

0 1 0 1 0 1 x|y

HACK ALU EXAMPLE 1
For the control bit combination highlighted on the left, as

zx and zy are both 1, x and y are both set to zero. If we

considered these inputs to be 4-bit, this would mean both

x and y are set to 00002.

As nx and ny are 1, both the x and y signals are then

negated, making each of these input signals set to 11112.

As the f select bit is 1, these input signals are then added

together i.e. 11112 + 11112 = 11102.

Finally, as no is 1, the output is negated, which would

make it 00012 = 110.

zx nx zy ny f no out

1 1 1 1 1 1 1

1 1 1 0 1 0 -1

0 0 0 0 1 0 x+y

0 1 0 0 1 1 x-y

0 0 0 0 0 0 x&y

0 1 0 1 0 1 x|y

HACK ALU EXAMPLE 2

For the control bit combination highlighted on the right, as

nx and ny are 1, both the x and y signals are negated,

giving us inputs of ¬x and ¬y.

As the f select bit is 0, the function selected is AND, which

gives us an output of (¬x ∧ ¬y).

Finally, as no is 1, the output is negated, which gives us a

final output of ¬(¬x ∧ ¬y).

But the output listed on our truth table is x|y?

Using De Morgan’s laws, these are the same thing!

zx nx zy ny f no out

1 1 1 1 1 1 1

1 1 1 0 1 0 -1

0 0 0 0 1 0 x+y

0 1 0 0 1 1 x-y

0 0 0 0 0 0 x&y

0 1 0 1 0 1 x|y

	Slide 1
	Slide 2: ALU
	Slide 3: Control bits
	Slide 4: Multiplexers
	Slide 5: deMultiplexers
	Slide 6: Hack alu
	Slide 7: Hack alu example 1
	Slide 8: Hack alu example 2

