
COMSM1302 Lab Sheet 2 (Solutions)

Half adder

The truth table for C out is the ex-
act same as for A ∧ B - for imple-
mentation see subcircuit half adder .

A B C out
0 0 0
0 1 0
1 0 0
1 1 1

The truth table for S is the exact
same as for A ⊕ B - for implemen-
tation see subcircuit half adder .

A B S
0 0 0
0 1 1
1 0 1
1 1 0

An incrementer adds 1 to its input. Since the half adder subcircuit only accepts 1-bit signals, we first split
the 4-bit input into four separate bits. Each bit is processed by a half adder, so we need four copies of the
subcircuit. There is no B input, so this pin on each adder is connected to the Cout of the previous one, except
for the LSB adder, where B is set to a constant 1. Finally, we recombine the four S outputs into a single 4-bit
signal with a splitter. For implementation see subcircuit 4-bit incrementer .

Full adder

C
inA

B
0 1

00

01

11

10

1

1

1 1

0 0

0

0

C out ≡ (A ∧B) ∨ (C in ∧ (A⊕B))

S
A
B

0 1

00

01

11

10

1

1

1

1

0

0

0

0

S ≡ A⊕B ⊕ C

Our logic for the C out and S outputs on the full adder can be found through the above Karnaugh maps, which
is simplified to the formula in red. We can replace A ∨B with A⊕B in the C out formula because they differ
only when A = B = 1. In that case, (A ∧B) = 1, so the whole expression is already 1 regardless of the second
term. For further details, see lecture 2-2: binary addition and for implementation see subcircuit full adder .

A full adder can also be built from two half adders: HA1 computes A+B, and HA2 computes (A+B) +C in.
This produces two carry signals, which are combined with OR to give a single C out. A truth table confirms
this:

HA1 C out HA2 C out FA C out
0 0 0 e.g. when A = 0, B = 0, C in = 0
0 1 1 e.g. when A = 0, B = 1, C in = 1
1 0 1 e.g. when A = 1, B = 1, C in = 0
1 1 X we never gets these at the same time

The 4-bit adder can then be constructed using 4 copies of the full adder subcircuit, as explained at the end of
the binary addition lecture i.e. connecting each C out to the next C in. Splitters divide A and B into 1-bit
inputs and recombine the sum bits into the 4-bit output. For implementation see subcircuit 4-bit adder .

To extend this design to subtraction, we input either B (for addition) or −B i.e. ¬B + 1 (for subtraction). A
multiplexer selects between B and ¬B. The unused C in of the LSB adder is then connected to the multiplexer’s
control signal, ensuring that in subtraction mode it adds the extra 1. Thus, when control = 1, the circuit performs
A−B; when control = 0, it performs A+B. For implementation see subcircuit 4-bit adder/subtractor .

1

https://cs-uob-overview-of-architecture.github.io/week2/2.2_binary_addition.pdf#page=6.00
https://cs-uob-overview-of-architecture.github.io/week2/2.2_binary_addition.pdf#page=8.00
https://cs-uob-overview-of-architecture.github.io/week2/2.2_binary_addition.pdf#page=8.00


NAND adders

From the previous lab, we know an XOR can be built with 4 NAND gates (though being able to prove this is
non-examinable, and using the 5 NAND gate configuration would be sufficient), which we can use to generate S.
For C out, which requires AND, we need 2 NAND gates. Since the first NAND in the XOR already computes
¬(A ∧B), we can reuse that signal and pass it through one more NAND to obtain C out. For implementation
see subcircuit nand half adder .

To extend this to a full adder, we duplicate the half adder design and connect the copies like in the standard
version. The only addition needed is the NAND equivalent of an OR gate. Adding this produces a 5-NAND
configuration, which simplifies to a single NAND by removing double negations:

For implementation see subcircuit nand full adder .

Plexers

SelA
B

0 1

00

01

11

10

1

1

1 1

0 0

0

0

Out ≡ (A ∧ ¬Sel) ∨ (B ∧ Sel)

For implementation of 2-to-1 multiplexer, based on this
Karnaugh map, see subcircuit 2-1 mux .

The truth table for Out0 is the same as for In ∧ ¬Sel,
while the truth table for Out1 is the same as for In∧Sel
- for implementation see subcircuit 1-2 demux .

In Sel Out0
0 0 0
0 1 0
1 0 1
1 1 0

In Sel Out1
0 0 0
0 1 0
1 0 0
1 1 1

A 4-to-1 multiplexer selects one of four inputs using two select bits. Each select bit essentially decides between two
options. Since a 2-to-1 multiplexer already performs a single binary choice, we can combine them hierarchically:

• The first select bit chooses within each pair of inputs (e.g. In0 vs In1, In2 vs In3), which needs two
2-to-1 multiplexers.

• The second select bit then chooses between those two results, which requires a third 2-to-1 multiplexer.

So the structure directly reflects how the two select bits encode the choice out of four: one bit narrows it down
to a pair, the other decides within the pair. For implementation see subcircuit 4-1 mux .

A 1-to-4 demultiplexer works in the reverse way. One input needs to be directed to one of four outputs, according
to two select bits. A 1-to-2 demux handles a single binary decision, so we cascade them:

• The first select bit decides which pair of outputs will receive the signal.

• The second select bit then decides which output within that pair.

Again, the hierarchy mirrors the binary structure of the select lines: two bits → two stages of binary decision.
For implementation see subcircuit 1-4 demux .

2



Arithmetic Logic Unit

The Hack ALU can be built using 2-1 multiplexers. Order matters - zeroing must happen before possible nega-
tion, the function f must be applied to the post-processed operands, and finally the no negates the resulting
signal. If you forget the order, reconstruct it from the Hack truth table!

The zr output is true if (and only if) all the outputs bits are 0 i.e. ¬bit0 ∧ ¬bit1 ∧ ¬bit2 ∧ ¬bit3 ≡ ¬(bit0 ∨
bit1 ∨ bit2 ∨ bit3), while the ng flag is true if (and only if) the output’s MSB is 1 i.e. bit3. For implementation
see subcircuit alu.

Number representations

Decimal (2’s Decimal (signed Decimal (1’s Floating

Binary Octal complement) Hexadecimal magnitude) complement) point

101011012 2558 −8310 AD16 −4510 −8210 −1.4062510

011101012 1658 11710 7516 11710 11710 6.62510

110111002 3348 −3610 DC16 −9210 −3510 −3.7510

100001012 2058 −12310 8516 −510 −12210 −0.57812510

110010102 3128 −5410 CA16 −7410 −5310 −2.62510

001010012 0518 4110 2916 4110 4110 1.2812510

011110112 1738 12310 7B16 12310 12310 7.37510

111111012 3758 −310 FD16 −12510 −210 −7.62510

101011002 2548 −8410 AC16 −4410 −8310 −1.37510

100100102 2228 −11010 9216 −1810 −10910 −0.7812510

011111112 1778 12710 7F16 12710 12710 7.87510

110110102 3328 −3810 DA16 −9010 −3710 −3.62510

For floating point, recall the format here is S(1), E(2), M(5). The decoded value depends on these bit widths -
changing the number of exponent or mantissa bits would change the result.

For signed integers, note the pattern: 2’s complement, 1’s complement, and signed magnitude all give the same
decimal values for positive numbers - they only differ in how negatives are represented.

3


