
Sequential logic and the R-S latch
COMSM1302 Overview of Computer Architecture

John Lapinskas, University of Bristol

John Lapinskas Sequential logic and the R-S latch 1 / 6



What is sequential logic?

In all the circuits you’ve seen so far, the output only depends on the
combination of the inputs. Independently of everything else, 1 ∧ 1 = 1.

This is called combinational or combinatorial logic. Everything we’ve
done so far works in this paradigm, and it’s still useful — the ALU from
week 2 is the same one we’ll use in creating the CPU.

But computers don’t work that way! They maintain internal state. To
build a computer, we have to go further.

In sequential logic outputs depend on past inputs, not just present inputs.

John Lapinskas Sequential logic and the R-S latch 2 / 6



What is sequential logic?

In all the circuits you’ve seen so far, the output only depends on the
combination of the inputs. Independently of everything else, 1 ∧ 1 = 1.

This is called combinational or combinatorial logic. Everything we’ve
done so far works in this paradigm, and it’s still useful — the ALU from
week 2 is the same one we’ll use in creating the CPU.

But computers don’t work that way! They maintain internal state. To
build a computer, we have to go further.

In sequential logic outputs depend on past inputs, not just present inputs.

John Lapinskas Sequential logic and the R-S latch 2 / 6



Demonstration

[Demonstration of R-S latch behaviour in Logisim — see video.]

John Lapinskas Sequential logic and the R-S latch 3 / 6



R-S latches

This circuit is an R-S latch, and it has no (formal) truth table:

R ′ S ′ Q Q ′

0 0 1 1
0 1 0 1
1 0 1 0
1 1 “Hold” “Hold”

The first three lines are fine, but when R ′ = S ′ = 1, the output of the
circuit stays the same as it previously was.

We won’t actually care about the behaviour when R ′ = S ′ = 0. This isn’t
part of the intended use of the circuit, and if it happens something has gone
wrong. The standard way of writing this in a truth table is with an X.

John Lapinskas Sequential logic and the R-S latch 4 / 6



R-S latches

This circuit is an R-S latch, and it has no (formal) truth table:

R ′ S ′ Q Q ′

0 0 X X
0 1 0 1
1 0 1 0
1 1 “Hold” “Hold”

The first three lines are fine, but when R ′ = S ′ = 1, the output of the
circuit stays the same as it previously was.

We won’t actually care about the behaviour when R ′ = S ′ = 0. This isn’t
part of the intended use of the circuit, and if it happens something has gone
wrong. The standard way of writing this in a truth table is with an X.

John Lapinskas Sequential logic and the R-S latch 4 / 6



R-S latches

This circuit is an R-S latch, and it has no (formal) truth table:

R ′ S ′ Q Q ′

0 0 X X
0 1 0 1
1 0 1 0
1 1 “Hold” “Hold”

Q ′ will always be ¬Q (barring X inputs). We think of Q as the main output.

We think of R ′ as a reset input and S ′ as a set input.
Both are activated by going from 1 to 0, not from 0 to 1!

If R ′ is activated, Q is set to 0, and stays 0 until S ′ is next activated.
If S ′ is activated, Q is set to 1, and stays 1 until R ′ is next activated.

This behaviour is incredibly important — we’ll use it to build RAM.

John Lapinskas Sequential logic and the R-S latch 4 / 6



R-S latches

This circuit is an R-S latch, and it has no (formal) truth table:

R ′ S ′ Q Q ′

0 0 X X
0 1 0 1
1 0 1 0
1 1 “Hold” “Hold”

What do the primes mean? Formally, nothing! They’re conventions, often
used in datasheets to help users quickly understand unfamiliar circuits.

A ′ or ¯ on an output (e.g. Q ′ or Q̄) means that it is inverted — that
Q ′ = ¬Q, where Q is the “real” output.

A ′ or ¯ on an input (e.g. R ′ or R̄) means that it is “activated” by going
from 1 to 0. We call inputs like these active low.

Inputs which are “activated” by going from 0 to 1 are called active high.

John Lapinskas Sequential logic and the R-S latch 4 / 6



Timing diagrams

In sequential logic, we use not just truth tables but timing diagrams.

R ′

S ′

Q

Q ′

Time
0 1 2 3 4 5 6 7 8 9 10 11

John Lapinskas Sequential logic and the R-S latch 5 / 6



Timing diagrams

In sequential logic, we use not just truth tables but timing diagrams.

R ′

S ′

Q

Q ′

Time
0 1 2 3 4 5 6 7 8 9 10 11

This diagram contains a subtle lie — signals don’t transition between 1 and
0 instantly! And even if R ′ and S ′ did, Q and Q ′ wouldn’t — it takes time
(the propagation delay) for electricity to pass through the latch.

John Lapinskas Sequential logic and the R-S latch 5 / 6



Timing diagrams

In sequential logic, we use not just truth tables but timing diagrams.

R ′

S ′

Q

Q ′

Time
0 1 2 3 4 5 6 7 8 9 10 11

This diagram contains a subtle lie — signals don’t transition between 1 and
0 instantly! And even if R ′ and S ′ did, Q and Q ′ wouldn’t — it takes time
(the propagation delay) for electricity to pass through the latch.

John Lapinskas Sequential logic and the R-S latch 5 / 6



Timing diagrams

In sequential logic, we use not just truth tables but timing diagrams.

R ′

S ′

Q

Q ′

Time
0 1 2 3 4 5 6 7 8 9 10 11

Propagation delay is normally measured in nanoseconds (10−9 seconds) or
picoseconds (10−12 seconds). In this unit we will mostly ignore it, but
sometimes it’s important — e.g. as a constraint on CPU clock speeds.

John Lapinskas Sequential logic and the R-S latch 5 / 6



Unpacking the mystery box

S ′

R ′

Q

Q ′

This is an R-S latch — just two NAND gates! Why does this work?

John Lapinskas Sequential logic and the R-S latch 6 / 6



Unpacking the mystery box

S ′

R ′

Q

Q ′

This is an R-S latch — just two NAND gates! Why does this work?

Let’s say set is active (so S ′ is low and R ′ is high). How does this propagate?

John Lapinskas Sequential logic and the R-S latch 6 / 6



Unpacking the mystery box

S ′

R ′

Q

Q ′

This is an R-S latch — just two NAND gates! Why does this work?

Let’s say set is active (so S ′ is low and R ′ is high). How does this propagate?

Since S ′ is low, the top NAND gate must be high regardless of Q ′.

John Lapinskas Sequential logic and the R-S latch 6 / 6



Unpacking the mystery box

S ′

R ′

Q

Q ′

This is an R-S latch — just two NAND gates! Why does this work?

Let’s say set is active (so S ′ is low and R ′ is high). How does this propagate?

Since S ′ is low, the top NAND gate must be high regardless of Q ′.

John Lapinskas Sequential logic and the R-S latch 6 / 6



Unpacking the mystery box

S ′

R ′

Q

Q ′

This is an R-S latch — just two NAND gates! Why does this work?

Let’s say set is active (so S ′ is low and R ′ is high). How does this propagate?

Since S ′ is low, the top NAND gate must be high regardless of Q ′.

Since R ′ is high too, this forces the bottom NAND gate low. This is stable.

John Lapinskas Sequential logic and the R-S latch 6 / 6



Unpacking the mystery box

S ′

R ′

Q

Q ′

This is an R-S latch — just two NAND gates! Why does this work?

Let’s say set is active (so S ′ is low and R ′ is high). How does this propagate?

Since S ′ is low, the top NAND gate must be high regardless of Q ′.

Since R ′ is high too, this forces the bottom NAND gate low. This is stable.

John Lapinskas Sequential logic and the R-S latch 6 / 6



Unpacking the mystery box

S ′

R ′

Q

Q ′

This is an R-S latch — just two NAND gates! Why does this work?

Let’s say set is active (so S ′ is low and R ′ is high). How does this propagate?

Since S ′ is low, the top NAND gate must be high regardless of Q ′.

Since R ′ is high too, this forces the bottom NAND gate low. This is stable.

Even after S ′ goes high again, the outputs stay the same.

John Lapinskas Sequential logic and the R-S latch 6 / 6



Unpacking the mystery box

S ′

R ′

Q

Q ′

This is an R-S latch — just two NAND gates! Why does this work?

Let’s say set is active (so S ′ is low and R ′ is high). How does this propagate?

Since S ′ is low, the top NAND gate must be high regardless of Q ′.

Since R ′ is high too, this forces the bottom NAND gate low. This is stable.

Even after S ′ goes high again, the outputs stay the same.

John Lapinskas Sequential logic and the R-S latch 6 / 6



Unpacking the mystery box

S ′

R ′

Q

Q ′

This is an R-S latch — just two NAND gates! Why does this work?

Let’s now say reset is active (so R ′ is low and S ′ is high).

John Lapinskas Sequential logic and the R-S latch 6 / 6



Unpacking the mystery box

S ′

R ′

Q

Q ′

This is an R-S latch — just two NAND gates! Why does this work?

Let’s now say reset is active (so R ′ is low and S ′ is high).

Since R ′ is low, the bottom NAND gate must be high regardless of Q.

John Lapinskas Sequential logic and the R-S latch 6 / 6



Unpacking the mystery box

S ′

R ′

Q

Q ′

This is an R-S latch — just two NAND gates! Why does this work?

Let’s now say reset is active (so R ′ is low and S ′ is high).

Since R ′ is low, the bottom NAND gate must be high regardless of Q.

John Lapinskas Sequential logic and the R-S latch 6 / 6



Unpacking the mystery box

S ′

R ′

Q

Q ′

This is an R-S latch — just two NAND gates! Why does this work?

Let’s now say reset is active (so R ′ is low and S ′ is high).

Since R ′ is low, the bottom NAND gate must be high regardless of Q.

Since S ′ is high too, this forces the top NAND gate low. This is stable.

John Lapinskas Sequential logic and the R-S latch 6 / 6



Unpacking the mystery box

S ′

R ′

Q

Q ′

This is an R-S latch — just two NAND gates! Why does this work?

Let’s now say reset is active (so R ′ is low and S ′ is high).

Since R ′ is low, the bottom NAND gate must be high regardless of Q.

Since S ′ is high too, this forces the top NAND gate low. This is stable.

John Lapinskas Sequential logic and the R-S latch 6 / 6



Unpacking the mystery box

S ′

R ′

Q

Q ′

This is an R-S latch — just two NAND gates! Why does this work?

Let’s now say reset is active (so R ′ is low and S ′ is high).

Since R ′ is low, the bottom NAND gate must be high regardless of Q.

Since S ′ is high too, this forces the top NAND gate low. This is stable.

Even after R ′ goes high again, the outputs stay the same.

John Lapinskas Sequential logic and the R-S latch 6 / 6



Unpacking the mystery box

S ′

R ′

Q

Q ′

This is an R-S latch — just two NAND gates! Why does this work?

Let’s now say reset is active (so R ′ is low and S ′ is high).

Since R ′ is low, the bottom NAND gate must be high regardless of Q.

Since S ′ is high too, this forces the top NAND gate low. This is stable.

Even after R ′ goes high again, the outputs stay the same.

John Lapinskas Sequential logic and the R-S latch 6 / 6


