Sequential logic and the R-S latch

COMSM1302 Overview of Computer Architecture

John Lapinskas, University of Bristol

John Lapinskas Sequential logic and the R-S latch 1/6

What is sequential logic?

In all the circuits you've seen so far, the output only depends on the
combination of the inputs. Independently of everything else, 1 A1 = 1.

This is called combinational or combinatorial logic. Everything we've
done so far works in this paradigm, and it's still useful — the ALU from
week 2 is the same one we'll use in creating the CPU.

John Lapinskas Sequential logic and the R-S latch 2/6

What is sequential logic?

In all the circuits you've seen so far, the output only depends on the
combination of the inputs. Independently of everything else, 1 A1 = 1.

This is called combinational or combinatorial logic. Everything we've
done so far works in this paradigm, and it's still useful — the ALU from
week 2 is the same one we'll use in creating the CPU.

But computers don't work that way! They maintain internal state. To
build a computer, we have to go further.

In sequential logic outputs depend on past inputs, not just present inputs.

John Lapinskas Sequential logic and the R-S latch 2/6

Demonstration

[Demonstration of R-S latch behaviour in Logisim — see video.]

John Lapinskas Sequential logic and the R-S latch 3/6

R-S latches

This circuit is an R-S latch, and it has no (formal) truth table:

Rl 5/ Q Ql
0 O 1 1
0 1 0 1
1 0 1 0
1 1 | "Hold” “Hold"

The first three lines are fine, but when R’ = S’ = 1, the output of the
circuit stays the same as it previously was.

We won't actually care about the behaviour when R" = S’ = 0. This isn't
part of the intended use of the circuit, and if it happens something has gone
wrong. The standard way of writing this in a truth table is with an X.

John Lapinskas Sequential logic and the R-S latch 4/6

R-S latches

This circuit is an R-S latch, and it has no (formal) truth table:

Rl 5/ Q Ql
0 O X X
0 1 0 1
1 0 1 0
1 1 | "Hold” “Hold"

The first three lines are fine, but when R’ = S’ = 1, the output of the
circuit stays the same as it previously was.

We won't actually care about the behaviour when R" = S’ = 0. This isn't
part of the intended use of the circuit, and if it happens something has gone
wrong. The standard way of writing this in a truth table is with an X.

John Lapinskas Sequential logic and the R-S latch 4/6

R-S latches

This circuit is an R-S latch, and it has no (formal) truth table:

Rl 5/ Q Ql
0 O X X
0 1 0 1
1 0 1 0
1 1 | "Hold” “Hold"

Q' will always be =Q (barring X inputs). We think of @ as the main output.

We think of R’ as a reset input and S’ as a set input.
Both are activated by going from 1 to 0, not from 0 to 1!

If R’ is activated, Q is set to 0, and stays 0 until S’ is next activated.
If S" is activated, Q is set to 1, and stays 1 until R’ is next activated.

This behaviour is incredibly important — we'll use it to build RAM.

John Lapinskas Sequential logic and the R-S latch 4/6

R-S latches

This circuit is an R-S latch, and it has no (formal) truth table:

Rl 5/ Q Ql
0 O X X
0 1 0 1
1 0 1 0
1 1 | "Hold” “Hold"

What do the primes mean? Formally, nothing! They're conventions, often
used in datasheets to help users quickly understand unfamiliar circuits.

A’ or on an output (e.g. Q or Q) means that it is inverted — that
Q' = —Q, where @ is the “real” output.

A’ or ~ onaninput (e.g. R’ or R) means that it is “activated” by going
from 1 to 0. We call inputs like these active low.

Inputs which are “activated” by going from 0 to 1 are called active high.

John Lapinskas Sequential logic and the R-S latch 4/6

=
o
2
&
u
-4
o
i=
=]
°
=
&
42
B0
=
=
=]
c
<
=
=3
5]
7]

John Lapinskas

In sequential logic, we use not just truth tables but timing diagrams.
5

(2]
S
S
&0
o
o
&0
=
£
_I

Timing diagrams

In sequential logic, we use not just truth tables but timing diagrams.

M nr
. Ju
s LI LT
I iR |

Q. | : I
o |]

0O 1.2 3 4 5 6 7 8 9 10 11
Time >

This diagram contains a subtle lie — signals don’t transition between 1 and
0 instantly! And even if R" and S’ did, @ and Q" wouldn't — it takes time
(the propagation delay) for electricity to pass through the latch.

John Lapinskas Sequential logic and the R-S latch

Timing diagrams

In sequential logic, we use not just truth tables but timing diagrams.

M nr
—_ J
s LI LT
L

QI 1 1 1 1 1 1 - 1 1
o | o
O 1 2 3 4 5 6 7 8 9 10 11
Time >

This diagram contains a subtle lie — signals don’t transition between 1 and
0 instantly! And even if R" and S’ did, @ and Q" wouldn't — it takes time
(the propagation delay) for electricity to pass through the latch.

John Lapinskas Sequential logic and the R-S latch

Timing diagrams

In sequential logic, we use not just truth tables but timing diagrams.

M nr
—_—l:e =N
Sl |:|| S R T :|:
N s TR

QI 1 1 1 1 '.‘ 1 1 [} S 1
A N !
0 1 2 3 4 5 6 7 8 9 10 11
Time >

Propagation delay is normally measured in nanoseconds (10~° seconds) or
picoseconds (10712 seconds). In this unit we will mostly ignore it, but
sometimes it's important — e.g. as a constraint on CPU clock speeds.

John Lapinskas Sequential logic and the R-S latch

Unpacking the mystery box

}
}

o

»—QQ'

This is an R-S latch — just two NAND gates! Why does this work?

John Lapinskas

Sequential logic and the R-S latch

0

Unpacking the mystery box

it BT Ol

'v*

This is an R-S latch — just two NAND gates! Why does this work?

Let's say set is active (so S’ is low and R’ is high). How does this propagate?

John Lapinskas Sequential logic and the R-S latch

Unpacking the mystery box

it BT Ol

'v*

This is an R-S latch — just two NAND gates! Why does this work?
Let's say set is active (so S’ is low and R’ is high). How does this propagate?

Since S’ is low, the top NAND gate must be high regardless of Q'.

John Lapinskas Sequential logic and the R-S latch 6/6

Unpacking the mystery box

it BT Ol

L

This is an R-S latch — just two NAND gates! Why does this work?
Let's say set is active (so S’ is low and R’ is high). How does this propagate?

Since S’ is low, the top NAND gate must be high regardless of Q'.

John Lapinskas Sequential logic and the R-S latch

Unpacking the mystery box

it BT Ol

L

This is an R-S latch — just two NAND gates! Why does this work?

Let's say set is active (so S’ is low and R’ is high). How does this propagate?
Since S’ is low, the top NAND gate must be high regardless of Q'.

Since R’ is high too, this forces the bottom NAND gate low. This is stable.

John Lapinskas Sequential logic and the R-S latch 6/6

Unpacking the mystery box

S o

R e o : Q

This is an R-S latch — just two NAND gates! Why does this work?

Let's say set is active (so S’ is low and R’ is high). How does this propagate?
Since S’ is low, the top NAND gate must be high regardless of Q'.
Since R’ is high too, this forces the bottom NAND gate low. This is stable.

John Lapinskas Sequential logic and the R-S latch

Unpacking the mystery box

S o

R/ ® .: : QI

This is an R-S latch — just two NAND gates! Why does this work?

Let's say set is active (so S’ is low and R’ is high). How does this propagate?
Since S’ is low, the top NAND gate must be high regardless of Q'.
Since R’ is high too, this forces the bottom NAND gate low. This is stable.

Even after S’ goes high again, the outputs stay the same.

John Lapinskas Sequential logic and the R-S latch 6/6

Unpacking the mystery box

S/ 6 o

R/ ® .: : QI

This is an R-S latch — just two NAND gates! Why does this work?

Let's say set is active (so S’ is low and R’ is high). How does this propagate?
Since S’ is low, the top NAND gate must be high regardless of Q'.
Since R’ is high too, this forces the bottom NAND gate low. This is stable.

Even after S’ goes high again, the outputs stay the same.

John Lapinskas Sequential logic and the R-S latch 6/6

Unpacking the mystery box

it BT Ol

L~

This is an R-S latch — just two NAND gates! Why does this work?

Let's now say reset is active (so R’ is low and S’ is high).

John Lapinskas Sequential logic and the R-S latch

Unpacking the mystery box

it BT Ol

L~

This is an R-S latch — just two NAND gates! Why does this work?
Let's now say reset is active (so R’ is low and S’ is high).

Since R’ is low, the bottom NAND gate must be high regardless of Q.

John Lapinskas Sequential logic and the R-S latch 6/6

Unpacking the mystery box

-_-.f-_-.. Q

]
i

This is an R-S latch — just two NAND gates! Why does this work?
Let's now say reset is active (so R’ is low and S’ is high).

Since R’ is low, the bottom NAND gate must be high regardless of Q.

John Lapinskas Sequential logic and the R-S latch

Unpacking the mystery box

-_-.f-_-.. Q

-] ,
R o—————o Q

This is an R-S latch — just two NAND gates! Why does this work?

]
i

Let's now say reset is active (so R’ is low and S’ is high).
Since R’ is low, the bottom NAND gate must be high regardless of Q.
Since S’ is high too, this forces the top NAND gate low. This is stable.

John Lapinskas Sequential logic and the R-S latch 6/6

Unpacking the mystery box

=

R o—————o

.Q’

This is an R-S latch — just two NAND gates! Why does this work?
Let's now say reset is active (so R’ is low and S’ is high).

Since R’ is low, the bottom NAND gate must be high regardless of Q.
Since S’ is high too, this forces the top NAND gate low. This is stable.

John Lapinskas Sequential logic and the R-S latch

Unpacking the mystery box

=

R o—————o

.Q’

This is an R-S latch — just two NAND gates! Why does this work?
Let's now say reset is active (so R’ is low and S’ is high).

Since R’ is low, the bottom NAND gate must be high regardless of Q.
Since S’ is high too, this forces the top NAND gate low. This is stable.

Even after R’ goes high again, the outputs stay the same.

John Lapinskas Sequential logic and the R-S latch 6/6

Unpacking the mystery box

=

R e o ’ QI

This is an R-S latch — just two NAND gates! Why does this work?
Let's now say reset is active (so R’ is low and S’ is high).

Since R’ is low, the bottom NAND gate must be high regardless of Q.
Since S’ is high too, this forces the top NAND gate low. This is stable.

Even after R’ goes high again, the outputs stay the same.

John Lapinskas Sequential logic and the R-S latch 6/6

