
From flip-flops to registers
COMSM1302 Overview of Computer Architecture

John Lapinskas, University of Bristol

John Lapinskas From flip-flops to registers 1 / 6



Clocked circuits

Recall from last time our big idea: we drive all our timings with a single
clock signal.

CLK · · ·

If an edge-triggered circuit is driven by this clock, we denote it by a
triangle. To save space, since all circuits use the same clock, we often
don’t draw in the wire. So e.g. a D flip-flop is often drawn as:

D Q

Q ′
DFF rather than

D Q

Q ′CLK

DFF

John Lapinskas From flip-flops to registers 2 / 6



1-bit registers

A (1-bit) register is a simple variant on a D flip-flop:

in

load
out

On a rising clock edge, if load is high, out takes on the value of in. If load
is low, out remains unchanged. How should we design this?

This design fails. Can you see why? Because here, out takes on the value
of in on a rising edge of load ∧ CLK , not of CLK . So if e.g. load oscillates
while CLK is high, out is unstable.

In general when working with flip-flops, it’s a bad idea to mess with the
clock signal — it’s easy to introduce bugs like this. Instead...

John Lapinskas From flip-flops to registers 3 / 6



1-bit registers

A (1-bit) register is a simple variant on a D flip-flop:

in

load
out

On a rising clock edge, if load is high, out takes on the value of in. If load
is low, out remains unchanged. How should we design this?

This design fails. Can you see why? Because here, out takes on the value
of in on a rising edge of load ∧ CLK , not of CLK . So if e.g. load oscillates
while CLK is high, out is unstable.

In general when working with flip-flops, it’s a bad idea to mess with the
clock signal — it’s easy to introduce bugs like this. Instead...

John Lapinskas From flip-flops to registers 3 / 6



1-bit registers

A (1-bit) register is a simple variant on a D flip-flop:

in

load
out

On a rising clock edge, if load is high, out takes on the value of in. If load
is low, out remains unchanged. How should we design this?

This design fails. Can you see why?

Because here, out takes on the value
of in on a rising edge of load ∧ CLK , not of CLK . So if e.g. load oscillates
while CLK is high, out is unstable.

In general when working with flip-flops, it’s a bad idea to mess with the
clock signal — it’s easy to introduce bugs like this. Instead...

John Lapinskas From flip-flops to registers 3 / 6



1-bit registers

A (1-bit) register is a simple variant on a D flip-flop:

in

load
out

On a rising clock edge, if load is high, out takes on the value of in. If load
is low, out remains unchanged. How should we design this?

This design fails. Can you see why? Because here, out takes on the value
of in on a rising edge of load ∧ CLK , not of CLK . So if e.g. load oscillates
while CLK is high, out is unstable.

In general when working with flip-flops, it’s a bad idea to mess with the
clock signal — it’s easy to introduce bugs like this. Instead...

John Lapinskas From flip-flops to registers 3 / 6



1-bit registers: the correct way!

We use the outputs from one clock cycle to set the inputs for the next,
using combinatorial logic. We want:

in load outold outnew
X 0 0 0
X 0 1 1
0 1 X 0
1 1 X 1

Here as last video, X means “don’t care”.

We could expand this out into a
full truth table and use a K-map... or just notice that this is a multiplexer!

John Lapinskas From flip-flops to registers 4 / 6



1-bit registers: the correct way!

We use the outputs from one clock cycle to set the inputs for the next,
using combinatorial logic. We want:

in load outold outnew
X 0 0 0
X 0 1 1
0 1 X 0
1 1 X 1

Here as last video, X means “don’t care”. We could expand this out into a
full truth table and use a K-map... or just notice that this is a multiplexer!

John Lapinskas From flip-flops to registers 4 / 6



Multi-bit registers

The Hack CPU uses not 1-bit registers but 16-bit registers, which we think
of as holding a single 16-bit binary value each:

in

load
out

Rather than drawing 16 separate wires, we draw one wire with a slash
through it, which we again think of as holding a binary value. We call this
sort of “binary wire” a bus. (Logisim uses slightly different notation.)

It’s simple to implement a 16-bit register, but it’s a good excuse to show
how buses and clocks work in Logisim.

John Lapinskas From flip-flops to registers 5 / 6



Multi-bit registers

The Hack CPU uses not 1-bit registers but 16-bit registers, which we think
of as holding a single 16-bit binary value each:

in

load
out

Rather than drawing 16 separate wires, we draw one wire with a slash
through it, which we again think of as holding a binary value. We call this
sort of “binary wire” a bus. (Logisim uses slightly different notation.)

It’s simple to implement a 16-bit register, but it’s a good excuse to show
how buses and clocks work in Logisim.

John Lapinskas From flip-flops to registers 5 / 6



Demonstration

[See video for a demonstration of assorted features in Logisim.
The circuit is available for download in readable form from the unit page.]

John Lapinskas From flip-flops to registers 6 / 6


