From flip-flops to registers

COMSM1302 Overview of Computer Architecture

John Lapinskas, University of Bristol

John Lapinskas From flip-flops to registers 1/6

Clocked circuits

Recall from last time our big idea: we drive all our timings with a single
clock signal.

ck| | [

If an edge-triggered circuit is driven by this clock, we denote it by a
triangle. To save space, since all circuits use the same clock, we often
don't draw in the wire. So e.g. a D flip-flop is often drawn as:

p— —Q p— —Q
DFF rather than DFF
—Q' CLKk— —

John Lapinskas From flip-flops to registers 2/6

A (1-bit) register is a simple variant on a D flip-flop:

load —

in

out

On a rising clock edge, if load is high, out takes on the value of in. If load
is low, out remains unchanged. How should we design this?

John Lapinskas From flip-flops to registers 3/6

A (1-bit) register is a simple variant on a D flip-flop:

load —

in

out

On a rising clock edge, if load is high, out takes on the value of in. If load
is low, out remains unchanged. How should we design this?

Q

in@ ore

DFF

@out

CLK..-I—_. . t
load

John Lapinskas

From flip-flops to registers 3/6

A (1-bit) register is a simple variant on a D flip-flop:

load —

in

out

On a rising clock edge, if load is high, out takes on the value of in. If load
is low, out remains unchanged. How should we design this?

Q

in@ ore

DFF

@out

CLK..-I—_. . t
load

This design fails. Can you see why?

John Lapinskas

From flip-flops to registers

3/6

A (1-bit) register is a simple variant on a D flip-flop:

load —

in

out

On a rising clock edge, if load is high, out takes on the value of in. If load
is low, out remains unchanged. How should we design this?

D

Q

in@ v

DFF

CLK..-I—_. . t
load

@out

This design fails. Can you see why? Because here, out takes on the value
of in on a rising edge of load A CLK, not of CLK. So if e.g. load oscillates

while CLK is high, out is unstable.

In general when working with flip-flops, it's a bad idea to mess with the
clock signal — it's easy to introduce bugs like this. Instead...

John Lapinskas From flip-flops to registers 3/6

1-bit registers: the correct way!

We use the outputs from one clock cycle to set the inputs for the next,
using combinatorial logic. We want:

in load outyq | outhew
X 0 0 0
X 0 1 1
0 1 X 0
1 1 X 1

Here as last video, X means “don't care”.

John Lapinskas From flip-flops to registers 4/6

1-bit registers: the correct way!

We use the outputs from one clock cycle to set the inputs for the next,
using combinatorial logic. We want:

in load outyq | outhew
X 0 0 0
X 0 1 1
0 1 X 0
1 1 X 1

Here as last video, X means “don't care”. We could expand this out into a
full truth table and use a K-map... or just notice that this is a multiplexer!

L
in. R‘ > D\FIF 2 l @out

P>
load @ CLK Q'

John Lapinskas From flip-flops to registers 4/6

Multi-bit registers

The Hack CPU uses not 1-bit registers but 16-bit registers, which we think
of as holding a single 16-bit binary value each:

load —
n —*

—~— out

Rather than drawing 16 separate wires, we draw one wire with a slash
through it, which we again think of as holding a binary value. We call this
sort of “binary wire” a bus. (Logisim uses slightly different notation.)

John Lapinskas From flip-flops to registers 5/6

Multi-bit registers

The Hack CPU uses not 1-bit registers but 16-bit registers, which we think
of as holding a single 16-bit binary value each:

load —
—+~— out

in —#

Rather than drawing 16 separate wires, we draw one wire with a slash
through it, which we again think of as holding a binary value. We call this
sort of “binary wire” a bus. (Logisim uses slightly different notation.)

It's simple to implement a 16-bit register, but it's a good excuse to show
how buses and clocks work in Logisim.

John Lapinskas From flip-flops to registers 5/6

Demonstration

u] fl f 0 ur 1 1 o
o
@Q
= = = =) =) = = =
— [\ S [\ I [\ I [S [S [C R [C R [
= =] [= R [= [= [= [= [[[=3
- O
- o o 0 0 0 o0 o0 o
@ @ @O @O @O ful ful @
e e Ao g e e i i i b o
“le == [l [l @ @ @ [[[l
= 2 g g z z z z z g
_ O
[(=] (=] (=] (=] (=] (=] (=] (=]
= = = = = = = =
I} I0 0 0 i il) :El

= = =
—. W [- Eo)
= [=] [=] (=3
- - ==
)))))))) - o
il il bl bl bl 3 3 3 -
T = T = T = T = Ve Va2 T2 T o | o |2
g g z z z z z g s o ==
=
(=] (=] (=] (=] (=] (=] (=] o =
= = = = = = =, =, (=N

o T z0 £0 #0 50 X

[See video for a demonstration of assorted features in Logisim.

The circuit is available for download in readable form from the unit page.]
0

John Lapinskas From flip-flops to registers

