
From registers to RAM
COMSM1302 Overview of Computer Architecture

John Lapinskas, University of Bristol

John Lapinskas From registers to RAM 1/ 7



What is memory?

Memory behaves like a collection of registers. Each register has an
address and stores one binary word of a set length (e.g. 16 bits for Hack).

in

address
out

load

The output out is always set to the value stored in the register with
address address. This happens immediately, not on a clock tick.

If load is high, then on a rising clock edge, the value stored in the register
with address address is set to in. If load is low, it doesn’t change.

Key terminology:

The size of each register is called the word size.

The set of valid addresses is called the address space.

Each 1-bit register (inside the larger registers) is called a cell.

How to build memory? You should be able to do this — see assignment!

John Lapinskas From registers to RAM 2/ 7



What is memory?

Memory behaves like a collection of registers. Each register has an
address and stores one binary word of a set length (e.g. 16 bits for Hack).

in

address
out

load

The output out is always set to the value stored in the register with
address address. This happens immediately, not on a clock tick.

If load is high, then on a rising clock edge, the value stored in the register
with address address is set to in. If load is low, it doesn’t change.

Key terminology:

The size of each register is called the word size.

The set of valid addresses is called the address space.

Each 1-bit register (inside the larger registers) is called a cell.

How to build memory? You should be able to do this — see assignment!

John Lapinskas From registers to RAM 2/ 7



What is memory?

Memory behaves like a collection of registers. Each register has an
address and stores one binary word of a set length (e.g. 16 bits for Hack).

in

address
out

load

The output out is always set to the value stored in the register with
address address. This happens immediately, not on a clock tick.

If load is high, then on a rising clock edge, the value stored in the register
with address address is set to in. If load is low, it doesn’t change.

Key terminology:

The size of each register is called the word size.

The set of valid addresses is called the address space.

Each 1-bit register (inside the larger registers) is called a cell.

How to build memory? You should be able to do this — see assignment!
John Lapinskas From registers to RAM 2/ 7



Demonstration

[See video for a demonstration of the built-in RAM component in Logisim.]

John Lapinskas From registers to RAM 3/ 7



RAM and ROM

The memory we’ve built out of flip-flops is volatile: it stores data only as long as
it’s kept supplied with power. Volatile memory is also called RAM (Random
Access Memory) for historical reasons that no longer apply.

Non-volatile storage, by contrast, stores data even while un-powered.

ROM (Read-Only Memory) is a type of non-volatile memory which is only
written to once, physically altering the chip. The advantage is low cost and faster
access times — it might be used for e.g. non-upgradable firmware.

The Hack CPU uses 16KB RAM and 32KB ROM for ease of implementation.

Most modern non-volatile memory is EEPROM (Electrically Erasable
Programmable ROM) including flash memory, which can be slowly (on CPU
timescales!) erased and rewritten.

So e.g. flash drives and SSDs use flash memory, which is EEPROM, but they
definitely aren’t read-only. But like all modern memory they are random-access!
The terminology is all very sensible.

John Lapinskas From registers to RAM 4/ 7



RAM and ROM

The memory we’ve built out of flip-flops is volatile: it stores data only as long as
it’s kept supplied with power. Volatile memory is also called RAM (Random
Access Memory) for historical reasons that no longer apply.

Non-volatile storage, by contrast, stores data even while un-powered.

ROM (Read-Only Memory) is a type of non-volatile memory which is only
written to once, physically altering the chip. The advantage is low cost and faster
access times — it might be used for e.g. non-upgradable firmware.

The Hack CPU uses 16KB RAM and 32KB ROM for ease of implementation.

Most modern non-volatile memory is EEPROM (Electrically Erasable
Programmable ROM) including flash memory, which can be slowly (on CPU
timescales!) erased and rewritten.

So e.g. flash drives and SSDs use flash memory, which is EEPROM, but they
definitely aren’t read-only. But like all modern memory they are random-access!
The terminology is all very sensible.

John Lapinskas From registers to RAM 4/ 7



SRAM and DRAM

The RAM we’ve built is similar to SRAM (Static RAM).

SRAM uses a highly efficient design that only needs 4–6 transistors per
bit, where ours would need ∼40. But both work on similar principles, and
both hold their data as long as they’re supplied with power.

DRAM (Dynamic RAM) works totally differently, storing data in a way
that needs to be manually refreshed every few ms and on each read.
Compared to SRAM it’s cheaper and higher-capacity, but much slower.

Modern computers use both DRAM and SRAM — see later in the unit!

SDRAM (Synchronised DRAM) is DRAM driven by a clock. All modern
DRAM is SDRAM; this has absolutely nothing to do with SRAM.

DDR (Double Data Rate) 1 through 5 are a family of protocols for data
transfer to and from DRAM, not fundamentally different technologies.

John Lapinskas From registers to RAM 5/ 7



Addendum: SI units for storage

Memory size “naturally” comes in powers of two, so we normally use these
alternative SI units, where e.g. 1KB means 1024 bytes rather than 1000:

Base 10 Symbol Name Base 2 Symbol Name
...

...
1015 P Peta- 250 P or Pi Peta- or pebi-
1012 T Tera- 240 T or Ti Tera- or tebi-
109 G Giga- 230 G or Gi Giga- or gibi-
106 M Mega- 220 M or Mi Mega- or mebi-
103 k Kilo- 210 K or Ki Kilo- or kibi-
100 N/A N/A 20 N/A N/A

This allows for e.g. two 16GB sticks of RAM to be combined into 32GB total
RAM by just adding one bit to the address space.

Everyone agrees on this except non-volatile storage manufacturers, who quite like
being able to advertise e.g. a “1TB drive” while only providing a 1012-byte drive.
And they have lawyers, so the usual P/T/G/M prefixes are often ambiguous...

In this unit, we will always use base 2 units for bytes.

John Lapinskas From registers to RAM 6/ 7



Addendum: A refresher(?) on logarithms

logb a (“Log base b of a”) is the number such that blogb a = a.

For example, log2 16 = 4, log2 256 = 8, and log2 1 = 0.

Logarithms are occasionally useful to us as a tool: for example, if we want to
know how many bits we need to represent x as an (unsigned) binary number, or
to store an address for an x-word memory, the answer will be log2 x rounded up.

For historical reasons, your calculator probably uses logarithms base 10 (“log”) or
base e ≈ 2.718 (“ln”). We can still calculate log2 x , using the fact that for any
base b, we have log2 x = (logb x)/(logb 2). This is because

2(logb x)/(logb 2) = (blogb 2)(logb x)/(logb 2) = blogb x = x .

Also, logb x grows very very slowly compared to e.g. x . In Programming in C,
you’ll see algorithms which run on inputs of size n in time that grows with log2 n.
If log2 n ≥ 50 then n ≥ 1PB! So you can think of log2 n as effectively being a
large-ish constant, to be traded off against other constant factors.

That’s all you’ll ever need to know about logarithms (for this degree)!

John Lapinskas From registers to RAM 7/ 7



Addendum: A refresher(?) on logarithms

logb a (“Log base b of a”) is the number such that blogb a = a.

For example, log2 16 = 4, log2 256 = 8, and log2 1 = 0.

Logarithms are occasionally useful to us as a tool: for example, if we want to
know how many bits we need to represent x as an (unsigned) binary number, or
to store an address for an x-word memory, the answer will be log2 x rounded up.

For historical reasons, your calculator probably uses logarithms base 10 (“log”) or
base e ≈ 2.718 (“ln”). We can still calculate log2 x , using the fact that for any
base b, we have log2 x = (logb x)/(logb 2). This is because

2(logb x)/(logb 2) = (blogb 2)(logb x)/(logb 2) = blogb x = x .

Also, logb x grows very very slowly compared to e.g. x . In Programming in C,
you’ll see algorithms which run on inputs of size n in time that grows with log2 n.
If log2 n ≥ 50 then n ≥ 1PB! So you can think of log2 n as effectively being a
large-ish constant, to be traded off against other constant factors.

That’s all you’ll ever need to know about logarithms (for this degree)!

John Lapinskas From registers to RAM 7/ 7



Addendum: A refresher(?) on logarithms

logb a (“Log base b of a”) is the number such that blogb a = a.

For example, log2 16 = 4, log2 256 = 8, and log2 1 = 0.

Logarithms are occasionally useful to us as a tool: for example, if we want to
know how many bits we need to represent x as an (unsigned) binary number, or
to store an address for an x-word memory, the answer will be log2 x rounded up.

For historical reasons, your calculator probably uses logarithms base 10 (“log”) or
base e ≈ 2.718 (“ln”). We can still calculate log2 x , using the fact that for any
base b, we have log2 x = (logb x)/(logb 2). This is because

2(logb x)/(logb 2) = (blogb 2)(logb x)/(logb 2) = blogb x = x .

Also, logb x grows very very slowly compared to e.g. x . In Programming in C,
you’ll see algorithms which run on inputs of size n in time that grows with log2 n.
If log2 n ≥ 50 then n ≥ 1PB! So you can think of log2 n as effectively being a
large-ish constant, to be traded off against other constant factors.

That’s all you’ll ever need to know about logarithms (for this degree)!

John Lapinskas From registers to RAM 7/ 7



Addendum: A refresher(?) on logarithms

logb a (“Log base b of a”) is the number such that blogb a = a.

For example, log2 16 = 4, log2 256 = 8, and log2 1 = 0.

Logarithms are occasionally useful to us as a tool: for example, if we want to
know how many bits we need to represent x as an (unsigned) binary number, or
to store an address for an x-word memory, the answer will be log2 x rounded up.

For historical reasons, your calculator probably uses logarithms base 10 (“log”) or
base e ≈ 2.718 (“ln”). We can still calculate log2 x , using the fact that for any
base b, we have log2 x = (logb x)/(logb 2). This is because

2(logb x)/(logb 2) = (blogb 2)(logb x)/(logb 2) = blogb x = x .

Also, logb x grows very very slowly compared to e.g. x . In Programming in C,
you’ll see algorithms which run on inputs of size n in time that grows with log2 n.
If log2 n ≥ 50 then n ≥ 1PB! So you can think of log2 n as effectively being a
large-ish constant, to be traded off against other constant factors.

That’s all you’ll ever need to know about logarithms (for this degree)!

John Lapinskas From registers to RAM 7/ 7


