
COMSM1302 Lab Sheet 3

Latches to flip-flops

The active low R-S latch design is explicitly covered in lecture 3-1: sequential logic and the R-S latch, and the
active high version can be creating by negating both the R and S inputs i.e. adding a NAND gate with copied
inputs directly after each pin. For implementation see subcircuits R-S latch (active low) and R-S latch (active
high).

The active high D latch design is explicitly covered in lecture 3-2: from latches to flip-flops although the version
shown in the solutions uses one less NAND gate. This uses a clever trick to transform the R′ input value from
¬(en∧¬D) to ¬(en∧¬(en∧D)) - try writing out the truth table for these expressions if you want to prove that
they’re logically equivalent! For implementation see subcircuit D latch (active high). The active low version
needs to activate when the en signal is 0, which can be achieved by negating the en input, using a NAND gate
with copied inputs. For implementation see subcircuit D latch (active low).

The negative edge D flip-flop design is explicitly covered in lecture 3-2: from latches to flip-flops, and the positive
edge version can be created by negating the en signal. This is achieved either by adding a NAND gate with
copied inputs to the en signal before it branches, or by moving the NAND gate that negated the en signal to the
follower D latch to the en signal to the leader D latch instead. For implementation see subcircuits D flip-flop
(negative edge) and D flip-flop (positive edge).

Treachery of Logisim

You should observe that the output is now updating to D on both rising and falling edges of E, not just rising
edges. By adding four more NAND gates (each acting as a NOT gate), we’ve increased the propagation delay
of the falling edge of E by so much that the en input of the leader latch goes high and the D input propagates
through to the follower latch before the en input of the follower latch goes low, causing the output to change.

For the next part, you should see that the lights representing the outputs of the NAND gates are on at a reduced
brightness compared to a normal 1 output. What’s going on here is again a matter of propagation delay - the
circuit is oscillating between one state in which the five lines are 1, 0, 1, 0, and 1, and another state in which
the five lines are 0, 1, 0, 1, and 0. This oscillation is happening too fast to see, but on average the LEDs are
receiving half as much voltage as normal, so they appear dimmer.

This circuit is called a ring oscillator. In principle you could use it to output a clock signal, but the frequency is
very inconsistent and depends on e.g. the temperature of the circuit boards - in fact, the variations in frequency
are sometimes used as a source of hardware-based randomness.
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Memory

To build a RAM circuit in Logisim, we use registers to store data and multiplexers/demultiplexers to control
where data is written and read. Each register acts as one memory location. The data input signal in is con-
nected to all registers simultaneously, but a register will only update its contents when its load (write-enable)
signal is high at the same time as a clock’s rising edge.

The address signal determines which register we want to access. During a write operation, the address is
fed into a demultiplexer, which uses it to activate the load signal for exactly one register. This means only
the addressed register will update its contents on the clock edge; all other registers will ignore the data input.
During a read operation, the address is again used, this time with a multiplexer on the outputs of the registers.
The selected register’s stored data is routed to the RAM’s output, while all other register outputs are ignored.

This same design can be scaled up to create larger RAM blocks by using smaller RAM units as subcircuits. For
example, an 8-word RAM circuit can be reused as a building block to construct a 64-word RAM. The key idea
is to split the address bits:

• The three most significant bits (MSBs) of the address choose which sub-RAM (one of the 8-word blocks)
will be active.

• The three remaining least significant bits (LSBs) are passed down to that chosen sub-RAM to select the
specific word inside it.

For implementation see subcircuits RAM8, RAM64 and RAM16K - notice that RAM with 32KB of memory is
listed as 16K, as the word size is 16 bits (2 bytes) and so it is made up of 16K registers.

Other flip-flops

A T flip-flop can be built from a D flip-flop by feeding the inverted output (¬Q) back into the D input. On
each rising clock edge, the flip-flop loads the opposite of its current state:

• If Q = 0, ¬Q = 1 is loaded so Q becomes 1

• If Q = 1, ¬Q = 0 is loaded so Q becomes 0

This causes the output to toggle between 0 and 1 on every clock cycle, which is the defining behaviour of a T
flip-flop. For implementation see subcircuit T flip-flop.

A JK flip-flop can also be built from a D flip-flop. The
provided truth table for a JK flip-flop can be expanded
to include Q as an additional input, as when J = K the
D input on the D flip-flop depends on this. In particular:

• When J = K = 0, D = Q

• when J = K = 1, D = ¬Q

For implementation see subcircuit JK flip-flop.
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