
Building with flip-flops and registers
COMSM1302 Overview of Computer Architecture

John Lapinskas, University of Bristol

John Lapinskas Building with flip-flops and registers 1 / 12



From gates to components

Physics
Transistors

Gates

Components We are here!

Computer microarchitecture
Instruction set

Assembly

Intermediate representation

High-level language

Hardware

Software

Things are getting complex enough that we can’t keep thinking of
individual NAND gates any more!

We must abstract things into components/subcircuits — plexers, adders,
registers, gates, and NANDs only when they are the right tool for the job.

These components will themselves become part of larger components...
John Lapinskas Building with flip-flops and registers 2 / 12



Registers as a building block: A counter

A counter stores and outputs a binary value out that goes up by 1 at (the
rising edge of) each clock cycle. It has a single input: reset. If reset is 1
on a rising edge, the value in the counter is set back to 0.

How can we build a 16-bit counter from a 16-bit register?

Let’s take the same approach as with the register and draw an informal
“truth table” to express our next desired output outnew in terms of our
inputs and the output outold from the previous cycle.

reset outnew
0 outold + 1
1 0x0000

We already know how to calculate outold +1 from
outold: with an adder!

And as with the register, we can express this sort of “if zero then x
otherwise y” logic neatly with a multiplexer.

John Lapinskas Building with flip-flops and registers 3 / 12



Registers as a building block: A counter

A counter stores and outputs a binary value out that goes up by 1 at (the
rising edge of) each clock cycle. It has a single input: reset. If reset is 1
on a rising edge, the value in the counter is set back to 0.

How can we build a 16-bit counter from a 16-bit register?

Let’s take the same approach as with the register and draw an informal
“truth table” to express our next desired output outnew in terms of our
inputs and the output outold from the previous cycle.

reset outnew
0 outold + 1
1 0x0000

We already know how to calculate outold +1 from
outold: with an adder!

And as with the register, we can express this sort of “if zero then x
otherwise y” logic neatly with a multiplexer.

John Lapinskas Building with flip-flops and registers 3 / 12



Registers as a building block: A counter

A counter stores and outputs a binary value out that goes up by 1 at (the
rising edge of) each clock cycle. It has a single input: reset. If reset is 1
on a rising edge, the value in the counter is set back to 0.

How can we build a 16-bit counter from a 16-bit register?

Let’s take the same approach as with the register and draw an informal
“truth table” to express our next desired output outnew in terms of our
inputs and the output outold from the previous cycle.

reset outnew
0 outold + 1
1 0x0000

We already know how to calculate outold +1 from
outold: with an adder!

And as with the register, we can express this sort of “if zero then x
otherwise y” logic neatly with a multiplexer.

John Lapinskas Building with flip-flops and registers 3 / 12



The counter in Logisim

[See video for a demonstration and further explanation.
The circuit is available for download from the unit page.]

John Lapinskas Building with flip-flops and registers 4 / 12



Flip-flops as a building block: A one-shot

A one-shot turns a 1 input into a pulse of 1 lasting for a single clock cycle:

CLK

in

out

Time
0 1 2 3 4 5 6 7 8 9 10

This is useful for e.g. initialising registers at power-on, or turning long
button-presses from a user into a more convenient form.

How can we build this out of flip-flops? It helps to break the circuit’s
behaviour down into states stored in flip-flops/registers.

John Lapinskas Building with flip-flops and registers 5 / 12



State diagrams

We want the one-shot to:
a Wait for a 1 on in.
b Send a pulse for one cycle.
c Wait for a 0 on in, then go back to (a).

We can represent this as a diagram:

This is a Moore machine. It transitions between states each clock cycle
based on its input, and its output is a function of its state.

We can store the state S as (e.g.) a binary number in a register/flip-flops.
Then state transitions and outputs come from combinatorial logic!

John Lapinskas Building with flip-flops and registers 6 / 12



State diagrams

We want the one-shot to:
a Wait for a 1 on in.
b Send a pulse for one cycle.
c Wait for a 0 on in, then go back to (a).

We can represent this as a diagram:

Wait for 1
Output 0

Input 1

Input 0

Input 1
Input 0 Input 1

Send pulse
Output 1

Wait for 0
Output 0

Input 0

This is a Moore machine. It transitions between states each clock cycle
based on its input, and its output is a function of its state.

We can store the state S as (e.g.) a binary number in a register/flip-flops.
Then state transitions and outputs come from combinatorial logic!

John Lapinskas Building with flip-flops and registers 6 / 12



State diagrams

We want the one-shot to:
a Wait for a 1 on in.
b Send a pulse for one cycle.
c Wait for a 0 on in, then go back to (a).

We can redraw this more compactly:

Wait for 1
Output 0

Input 1

Input 0

Input 1
Input 0 Input 1

Send pulse
Output 1

Wait for 0
Output 0

Input 0

This is a Moore machine. It transitions between states each clock cycle
based on its input, and its output is a function of its state.

We can store the state S as (e.g.) a binary number in a register/flip-flops.
Then state transitions and outputs come from combinatorial logic!

John Lapinskas Building with flip-flops and registers 6 / 12



State diagrams

We want the one-shot to:
a Wait for a 1 on in.
b Send a pulse for one cycle.
c Wait for a 0 on in, then go back to (a).

We can redraw this more compactly:

S0
0

1

0

1
0 1

S1
1

S2
0

0

This is a Moore machine. It transitions between states each clock cycle
based on its input, and its output is a function of its state.

We can store the state S as (e.g.) a binary number in a register/flip-flops.
Then state transitions and outputs come from combinatorial logic!

John Lapinskas Building with flip-flops and registers 6 / 12



State diagrams

We want the one-shot to:
a Wait for a 1 on in.
b Send a pulse for one cycle.
c Wait for a 0 on in, then go back to (a).

We can redraw this more compactly:

S0
0

1

0

1
0 1

S1
1

S2
0

0

This is a Moore machine. It transitions between states each clock cycle
based on its input, and its output is a function of its state.

We can store the state S as (e.g.) a binary number in a register/flip-flops.
Then state transitions and outputs come from combinatorial logic!

John Lapinskas Building with flip-flops and registers 6 / 12



Building the one-shot

Say we store the state in two flip-flops XY , representing S0, S1 and S2 as
00, 01 and 10 respectively. Then our truth tables are:

Xold Yold in Xnew Ynew

0 0 0 0 0
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 X X X

We can take

Xnew = (Xold ∨ Yold) ∧ in,

Ynew = ¬Xold ∧ ¬Yold ∧ in.

X Y out

0 0 0
0 1 1
1 0 0
1 1 X

We can take out = Y .

John Lapinskas Building with flip-flops and registers 7 / 12



Building the one-shot

Say we store the state in two flip-flops XY , representing S0, S1 and S2 as
00, 01 and 10 respectively. Then our truth tables are:

Xold Yold in Xnew Ynew

0 0 0 0 0
0 0 1 0 1
0 1 0 0 0
0 1 1 1 0
1 0 0 0 0
1 0 1 1 0
1 1 X X X

We can take

Xnew = (Xold ∨ Yold) ∧ in,

Ynew = ¬Xold ∧ ¬Yold ∧ in.

X Y out

0 0 0
0 1 1
1 0 0
1 1 X

We can take out = Y .

John Lapinskas Building with flip-flops and registers 7 / 12



The one-shot in Logisim

[See video for a demonstration and further explanation.
The circuit is available for download from the unit page.]

John Lapinskas Building with flip-flops and registers 8 / 12



A better one-shot: Mealy machines

Is this optimal? Definitely not! There are many tricks to do better, e.g.
being very careful about encoding your state in the most useful way.

Here’s one trick: By capturing the input in its own flip-flop/register, we
can make the output depend on both the old state and the old input.

This means we can make the output depend on transitions between
states, not just the state itself.

S0

1/1

0/0

0/0 1/0S1

Here e.g. “1/0” written near an arrow means that the transition between
states happens on input 1, and results in output 0.

This is called a Mealy machine. Both Moore and Mealy machines are
examples of finite state machines.

John Lapinskas Building with flip-flops and registers 9 / 12



A better one-shot: Mealy machines

Is this optimal? Definitely not! There are many tricks to do better, e.g.
being very careful about encoding your state in the most useful way.

Here’s one trick: By capturing the input in its own flip-flop/register, we
can make the output depend on both the old state and the old input.

This means we can make the output depend on transitions between
states, not just the state itself.

S0

1/1

0/0

0/0 1/0S1

Here e.g. “1/0” written near an arrow means that the transition between
states happens on input 1, and results in output 0.

This is called a Mealy machine. Both Moore and Mealy machines are
examples of finite state machines.

John Lapinskas Building with flip-flops and registers 9 / 12



Building a better one-shot

The truth table we need to
make this Mealy machine is:

Sold inold Snew out

0 0 0 0
0 1 1 1
1 0 0 0
1 1 1 0

Snew = inold,

out = ¬Sold ∧ inold.

Much better! Notice we could also remove the NOT gate if we wanted, by
using the Q ′ output of the state flip-flop instead of the Q output.

John Lapinskas Building with flip-flops and registers 10 / 12



Building a better one-shot

The truth table we need to
make this Mealy machine is:

Sold inold Snew out

0 0 0 0
0 1 1 1
1 0 0 0
1 1 1 0

Snew = inold,

out = ¬Sold ∧ inold.

Much better! Notice we could also remove the NOT gate if we wanted, by
using the Q ′ output of the state flip-flop instead of the Q output.

John Lapinskas Building with flip-flops and registers 10 / 12



General Moore and Mealy machines

You can implement any Moore/Mealy machine with the following schema:

Input
Logic

State
storage

Logic Output

Every Moore machine

The storage can be flip-flops or registers, but should be clocked.

The logic should be combinatorial (i.e. unclocked gates), and you can
implement it by writing down the truth tables — like with the one-shot.

John Lapinskas Building with flip-flops and registers 11 / 12



General Moore and Mealy machines

You can implement any Moore/Mealy machine with the following schema:

Logic
Input

State

Output

Storage

Output

Every Mealy machine

The storage can be flip-flops or registers, but should be clocked.

The logic should be combinatorial (i.e. unclocked gates), and you can
implement it by writing down the truth tables — like with the one-shot.

John Lapinskas Building with flip-flops and registers 11 / 12



Less formal state diagrams

Suppose we want a vending machine to:

a Wait for the user to enter the first digit of their snack.

b Wait for the user to enter the second digit of their snack or hit
“back” to erase the first digit.

c Wait for the user to put in enough money to pay for their snack or hit
“back” to cancel the transaction.

d Dispense the snack (if the user didn’t hit “back”) and any change,
then go back to (a).

This won’t be a “pure” Moore or Mealy machine — e.g. we’ll want to
track the amount of money via a register. But we can and should still
build the circuit by tracking an internal state.

Finite state machines are useful even in programming, as a way of
simplifying complex control logic. For example, the platforming logic of
Celeste is available here, and is based around a finite state machine!

John Lapinskas Building with flip-flops and registers 12 / 12

https://github.com/NoelFB/Celeste/blob/master/Source/Player/Player.cs


Less formal state diagrams

Suppose we want a vending machine to:

a Wait for the user to enter the first digit of their snack.

b Wait for the user to enter the second digit of their snack or hit
“back” to erase the first digit.

c Wait for the user to put in enough money to pay for their snack or hit
“back” to cancel the transaction.

d Dispense the snack (if the user didn’t hit “back”) and any change,
then go back to (a).

This won’t be a “pure” Moore or Mealy machine — e.g. we’ll want to
track the amount of money via a register. But we can and should still
build the circuit by tracking an internal state.

Finite state machines are useful even in programming, as a way of
simplifying complex control logic. For example, the platforming logic of
Celeste is available here, and is based around a finite state machine!

John Lapinskas Building with flip-flops and registers 12 / 12

https://github.com/NoelFB/Celeste/blob/master/Source/Player/Player.cs

