
Hack assembly I: The basics
COMSM1302 Overview of Computer Architecture

John Lapinskas, University of Bristol

John Lapinskas Hack Assembly I 1 / 11



The early days of computing

Source: University of Cambridge (here)

In 1949, EDSAC was one of the first stored-program computers ever to go
into regular use (contested with the Manchester Mark 1).

And even then people didn’t want to write in machine code.

Instead, they used mnemonics: One line of text per instruction. This was
the first assembly language, and they became ubiquitous in the 1950s.
A program called an assembler translates assembly into machine code.

John Lapinskas Hack Assembly I 2 / 11

https://www.cst.cam.ac.uk/news/70-years-first-computer-designed-practical-everyday-use


The early days of computing

Source: University of Cambridge (here)

In 1949, EDSAC was one of the first stored-program computers ever to go
into regular use (contested with the Manchester Mark 1).

And even then people didn’t want to write in machine code.

Instead, they used mnemonics: One line of text per instruction. This was
the first assembly language, and they became ubiquitous in the 1950s.
A program called an assembler translates assembly into machine code.

John Lapinskas Hack Assembly I 2 / 11

https://www.cst.cam.ac.uk/news/70-years-first-computer-designed-practical-everyday-use


The early days of computing

Source: University of Cambridge (here)

In 1949, EDSAC was one of the first stored-program computers ever to go
into regular use (contested with the Manchester Mark 1).

And even then people didn’t want to write in machine code.

Instead, they used mnemonics: One line of text per instruction. This was
the first assembly language, and they became ubiquitous in the 1950s.
A program called an assembler translates assembly into machine code.

John Lapinskas Hack Assembly I 2 / 11

https://www.cst.cam.ac.uk/news/70-years-first-computer-designed-practical-everyday-use


Wait, what about punchcards?

Source: Jim Scott’s collection of punched cards (here)

People did program computers with machine code on punchcards even into
the 1970s, but not because assembly hadn’t been invented!

If you only have one giant mainframe in the company, it’s much faster to
load batches of code or data in from punchcards than it is to have people
come into the computer room one by one and type it out...

John Lapinskas Hack Assembly I 3 / 11

https://www.jkmscott.net/data/Punched%20Cards.html


Wait, what about punchcards?

Source: Jim Scott’s collection of punched cards (here)

People did program computers with machine code on punchcards even into
the 1970s, but not because assembly hadn’t been invented!

If you only have one giant mainframe in the company, it’s much faster to
load batches of code or data in from punchcards than it is to have people
come into the computer room one by one and type it out...

John Lapinskas Hack Assembly I 3 / 11

https://www.jkmscott.net/data/Punched%20Cards.html


Wait, what about punchcards?

Source: Jim Scott’s collection of punched cards (here)

People did program computers with machine code on punchcards even into
the 1970s, but not because assembly hadn’t been invented!

If you only have one giant mainframe in the company, it’s much faster to
load batches of code or data in from punchcards than it is to have people
come into the computer room one by one and type it out...

John Lapinskas Hack Assembly I 3 / 11

https://www.jkmscott.net/data/Punched%20Cards.html


The rise of the PC

Source: Telwink on Flickr (here)

Punchcards gave way to dumb terminals (with no computing power of
their own but connected to a mainframe via a wired network) in the 1970s.

Dumb terminals gave way to personal computers in the 1980s–90s.
John Lapinskas Hack Assembly I 4 / 11

https://www.flickr.com/photos/telwink/3797070188


Hack assembly: Why?

We don’t have to worry about this, so we will focus on Hack assembly.
We’ll discuss machine code later, when we assemble the Hack CPU.

Since one line of assembly corresponds to one instruction, there is no one
“assembly language”. Different architectures (e.g. x86-64, i386, ARM,
MIPS) have different assembly languages.

We teach Hack assembly not because it’s directly useful, but because it
primes you to learn assembly for any other architecture.

Optimised assembly code is often faster than compiled code. Most
high-performance languages (e.g. C, C++, Rust) allow assembly to be
embedded inline for optimisation (e.g. via asm for C with gcc).

Warning: Assembly is neither portable nor legible nor easily maintainable!

You should only “optimise” a piece of code by using assembly if you
already know that code is a serious performance bottleneck (e.g. from
profiling tools). In general, premature optimisation is a bad idea.

John Lapinskas Hack Assembly I 5 / 11



Hack assembly: Why?

We don’t have to worry about this, so we will focus on Hack assembly.
We’ll discuss machine code later, when we assemble the Hack CPU.

Since one line of assembly corresponds to one instruction, there is no one
“assembly language”. Different architectures (e.g. x86-64, i386, ARM,
MIPS) have different assembly languages.

We teach Hack assembly not because it’s directly useful, but because it
primes you to learn assembly for any other architecture.

Optimised assembly code is often faster than compiled code. Most
high-performance languages (e.g. C, C++, Rust) allow assembly to be
embedded inline for optimisation (e.g. via asm for C with gcc).

Warning: Assembly is neither portable nor legible nor easily maintainable!

You should only “optimise” a piece of code by using assembly if you
already know that code is a serious performance bottleneck (e.g. from
profiling tools). In general, premature optimisation is a bad idea.

John Lapinskas Hack Assembly I 5 / 11



Hack assembly: Why?

We don’t have to worry about this, so we will focus on Hack assembly.
We’ll discuss machine code later, when we assemble the Hack CPU.

Since one line of assembly corresponds to one instruction, there is no one
“assembly language”. Different architectures (e.g. x86-64, i386, ARM,
MIPS) have different assembly languages.

We teach Hack assembly not because it’s directly useful, but because it
primes you to learn assembly for any other architecture.

Optimised assembly code is often faster than compiled code. Most
high-performance languages (e.g. C, C++, Rust) allow assembly to be
embedded inline for optimisation (e.g. via asm for C with gcc).

Warning: Assembly is neither portable nor legible nor easily maintainable!

You should only “optimise” a piece of code by using assembly if you
already know that code is a serious performance bottleneck (e.g. from
profiling tools). In general, premature optimisation is a bad idea.

John Lapinskas Hack Assembly I 5 / 11



Registers in Hack

The Hack CPU has registers A, M, D and PC. Each holds one 16-bit word.

A is the address register. It’s the only register we can load values into
directly, rather than needing to read them from memory first.

M is the memory register. When read from, it returns RAM[A]. When
written to, it updates RAM[A]. It’s interpreting A’s value as a pointer and
dereferencing it, like in C.

D is the data register for general-purpose storage that (unlike A) doesn’t
alter the value of M. For longer-term or larger storage, we use RAM.

PC is the program counter. The next instruction to be executed is
always ROM[PC ], so by writing to PC we can jump around in the code.
This works differently to writing to the others (see next video).

John Lapinskas Hack Assembly I 6 / 11



Registers in Hack

The Hack CPU has registers A, M, D and PC. Each holds one 16-bit word.

A is the address register. It’s the only register we can load values into
directly, rather than needing to read them from memory first.

M is the memory register. When read from, it returns RAM[A]. When
written to, it updates RAM[A]. It’s interpreting A’s value as a pointer and
dereferencing it, like in C.

D is the data register for general-purpose storage that (unlike A) doesn’t
alter the value of M. For longer-term or larger storage, we use RAM.

PC is the program counter. The next instruction to be executed is
always ROM[PC ], so by writing to PC we can jump around in the code.
This works differently to writing to the others (see next video).

John Lapinskas Hack Assembly I 6 / 11



Registers in Hack

The Hack CPU has registers A, M, D and PC. Each holds one 16-bit word.

A is the address register. It’s the only register we can load values into
directly, rather than needing to read them from memory first.

M is the memory register. When read from, it returns RAM[A]. When
written to, it updates RAM[A]. It’s interpreting A’s value as a pointer and
dereferencing it, like in C.

D is the data register for general-purpose storage that (unlike A) doesn’t
alter the value of M. For longer-term or larger storage, we use RAM.

PC is the program counter. The next instruction to be executed is
always ROM[PC ], so by writing to PC we can jump around in the code.
This works differently to writing to the others (see next video).

John Lapinskas Hack Assembly I 6 / 11



Registers in Hack

The Hack CPU has registers A, M, D and PC. Each holds one 16-bit word.

A is the address register. It’s the only register we can load values into
directly, rather than needing to read them from memory first.

M is the memory register. When read from, it returns RAM[A]. When
written to, it updates RAM[A]. It’s interpreting A’s value as a pointer and
dereferencing it, like in C.

D is the data register for general-purpose storage that (unlike A) doesn’t
alter the value of M. For longer-term or larger storage, we use RAM.

PC is the program counter. The next instruction to be executed is
always ROM[PC ], so by writing to PC we can jump around in the code.
This works differently to writing to the others (see next video).

John Lapinskas Hack Assembly I 6 / 11



Registers in Hack

The Hack CPU has registers A, M, D and PC. Each holds one 16-bit word.

A is the address register. It’s the only register we can load values into
directly, rather than needing to read them from memory first.

M is the memory register. When read from, it returns RAM[A]. When
written to, it updates RAM[A]. It’s interpreting A’s value as a pointer and
dereferencing it, like in C.

D is the data register for general-purpose storage that (unlike A) doesn’t
alter the value of M. For longer-term or larger storage, we use RAM.

PC is the program counter. The next instruction to be executed is
always ROM[PC ], so by writing to PC we can jump around in the code.
This works differently to writing to the others (see next video).

John Lapinskas Hack Assembly I 6 / 11



Operations on (non-PC) registers in Hack

@[number] loads number into A, e.g. @42 sets A to 42.

All other operations are of the form:

Constants Example

Unary operations Example Binary operations Example

Assign 0 M=0

Identity D=A Addition D=A+D

Assign 1 D=1

Negation A=-D Subtraction M=M-D

Assign −1 A=-1

Bitwise NOT D=!D Bitwise AND D=D&A

Increment A=A+1 Bitwise OR A=D|M

Decrement M=M-1

Don’t try to learn this table by heart — refer back to it as needed!

Important: All binary operations are between two different registers, at
least one of which is D. So e.g. D=A+M or M=D+D are not allowed.

More complex expressions like A=D+M+A or D=17 are also not allowed.

You can do also multiple assignment, replacing the left-hand side by two
or three registers. E.g. MD=D-M assigns D −M to both M and D.

The syntax for this is that A, M and D must appear in order — so e.g.
AMD=D+M is valid but DAM=D+M is not.

John Lapinskas Hack Assembly I 7 / 11



Operations on (non-PC) registers in Hack

@[number] loads number into A, e.g. @42 sets A to 42.

All other operations are of the form:

Constants Example

Unary operations Example Binary operations Example

Assign 0 M=0

Identity D=A Addition D=A+D

Assign 1 D=1

Negation A=-D Subtraction M=M-D

Assign −1 A=-1

Bitwise NOT D=!D Bitwise AND D=D&A

Increment A=A+1 Bitwise OR A=D|M

Decrement M=M-1

Don’t try to learn this table by heart — refer back to it as needed!

Important: All binary operations are between two different registers, at
least one of which is D. So e.g. D=A+M or M=D+D are not allowed.

More complex expressions like A=D+M+A or D=17 are also not allowed.

You can do also multiple assignment, replacing the left-hand side by two
or three registers. E.g. MD=D-M assigns D −M to both M and D.

The syntax for this is that A, M and D must appear in order — so e.g.
AMD=D+M is valid but DAM=D+M is not.

John Lapinskas Hack Assembly I 7 / 11



Operations on (non-PC) registers in Hack

@[number] loads number into A, e.g. @42 sets A to 42.

All other operations are of the form:

Constants Example Unary operations Example

Binary operations Example

Assign 0 M=0 Identity D=A

Addition D=A+D

Assign 1 D=1 Negation A=-D

Subtraction M=M-D

Assign −1 A=-1 Bitwise NOT D=!D

Bitwise AND D=D&A

Increment A=A+1

Bitwise OR A=D|M

Decrement M=M-1

Don’t try to learn this table by heart — refer back to it as needed!

Important: All binary operations are between two different registers, at
least one of which is D. So e.g. D=A+M or M=D+D are not allowed.

More complex expressions like A=D+M+A or D=17 are also not allowed.

You can do also multiple assignment, replacing the left-hand side by two
or three registers. E.g. MD=D-M assigns D −M to both M and D.

The syntax for this is that A, M and D must appear in order — so e.g.
AMD=D+M is valid but DAM=D+M is not.

John Lapinskas Hack Assembly I 7 / 11



Operations on (non-PC) registers in Hack

@[number] loads number into A, e.g. @42 sets A to 42.

All other operations are of the form:

Constants Example Unary operations Example Binary operations Example
Assign 0 M=0 Identity D=A Addition D=A+D

Assign 1 D=1 Negation A=-D Subtraction M=M-D

Assign −1 A=-1 Bitwise NOT D=!D Bitwise AND D=D&A

Increment A=A+1 Bitwise OR A=D|M

Decrement M=M-1

Don’t try to learn this table by heart — refer back to it as needed!

Important: All binary operations are between two different registers, at
least one of which is D. So e.g. D=A+M or M=D+D are not allowed.

More complex expressions like A=D+M+A or D=17 are also not allowed.

You can do also multiple assignment, replacing the left-hand side by two
or three registers. E.g. MD=D-M assigns D −M to both M and D.

The syntax for this is that A, M and D must appear in order — so e.g.
AMD=D+M is valid but DAM=D+M is not.

John Lapinskas Hack Assembly I 7 / 11



Operations on (non-PC) registers in Hack

@[number] loads number into A, e.g. @42 sets A to 42.

All other operations are of the form:

Constants Example Unary operations Example Binary operations Example
Assign 0 M=0 Identity D=A Addition D=A+D

Assign 1 D=1 Negation A=-D Subtraction M=M-D

Assign −1 A=-1 Bitwise NOT D=!D Bitwise AND D=D&A

Increment A=A+1 Bitwise OR A=D|M

Decrement M=M-1

Don’t try to learn this table by heart — refer back to it as needed!

Important: All binary operations are between two different registers, at
least one of which is D. So e.g. D=A+M or M=D+D are not allowed.

More complex expressions like A=D+M+A or D=17 are also not allowed.

You can do also multiple assignment, replacing the left-hand side by two
or three registers. E.g. MD=D-M assigns D −M to both M and D.

The syntax for this is that A, M and D must appear in order — so e.g.
AMD=D+M is valid but DAM=D+M is not.

John Lapinskas Hack Assembly I 7 / 11



Example: add.asm

@0

D=M

@1

D=D+M

@17

D=D+A

@2

M=D

This is assembly code to store RAM[0] + RAM[1] + 17 in RAM[2].

(NB all Hack programs should end with an infinite loop — see next video.)

[See a demonstration of the Hack assembler and CPU simulator.]

John Lapinskas Hack Assembly I 8 / 11



A small mercy: Comments and keywords

Another benefit of assembly over machine code is comments. The
assembler skips lines starting with //, plus empty lines and leading spaces.
Mid-line comments (e.g. “A=D // Comment”) are also fine.

The assembler will also replace any instance of @R0 with @0, @R1 with @1,
and so on up to @R15 with @15.

We sometimes call RAM addresses 0 through 15 virtual registers. In
hardware they’re the same as any other memory address, but we think of
them as being used to hold e.g. inputs and outputs.

By writing e.g. @R5 instead of @5, we signal to ourselves that we care
about 5 as a memory address (e.g. to read from RAM[5] with M) rather
than as a literal number (to e.g. add 5 to D).

There are other keywords like this, which we’ll discuss (much) later:

SP 7→ 0, LCL 7→ 1, ARG 7→ 2, THIS 7→ 3, THAT 7→ 4,

SCREEN 7→ 16384, KBD 7→ 24576.

John Lapinskas Hack Assembly I 9 / 11



Example: add.asm redux

// D <- RAM[0]

@R0

D=M

// D <- D + RAM[1]

@R1

D=D+M

// D <- D + 17

@17

D=D+A

// RAM[2] <- D

@R2

M=D

Much better! Well, at least a little better.

John Lapinskas Hack Assembly I 10 / 11



A larger mercy: Variables

The assembler also handles alphabetical variables in @ statements.

The first time you write e.g. @var, it associates the string var with a
unique address in RAM (say 16). It then replaces that and every future
instance of @var with @16. These are case sensitive.

Addresses are assigned to variables starting from 16. E.g. if you use
variables foo, Foo, and FOO in that order, then @foo becomes @16, @Foo
becomes @17 and @FOO becomes @18.

Use variables rather than memory addresses where possible — it makes
code more legible. But be careful. These are not C’s variables, there are
no types, and the only memory allocation is what’s explained above!

Where might it not be possible or sensible to use variables?

E.g. if your desired output is two lists of a hundred numbers each!
Or worse, two lists of length determined at run-time.

John Lapinskas Hack Assembly I 11 / 11



A larger mercy: Variables

The assembler also handles alphabetical variables in @ statements.

The first time you write e.g. @var, it associates the string var with a
unique address in RAM (say 16). It then replaces that and every future
instance of @var with @16. These are case sensitive.

Addresses are assigned to variables starting from 16. E.g. if you use
variables foo, Foo, and FOO in that order, then @foo becomes @16, @Foo
becomes @17 and @FOO becomes @18.

Use variables rather than memory addresses where possible — it makes
code more legible. But be careful. These are not C’s variables, there are
no types, and the only memory allocation is what’s explained above!

Where might it not be possible or sensible to use variables?

E.g. if your desired output is two lists of a hundred numbers each!
Or worse, two lists of length determined at run-time.

John Lapinskas Hack Assembly I 11 / 11



A larger mercy: Variables

The assembler also handles alphabetical variables in @ statements.

The first time you write e.g. @var, it associates the string var with a
unique address in RAM (say 16). It then replaces that and every future
instance of @var with @16. These are case sensitive.

Addresses are assigned to variables starting from 16. E.g. if you use
variables foo, Foo, and FOO in that order, then @foo becomes @16, @Foo
becomes @17 and @FOO becomes @18.

Use variables rather than memory addresses where possible — it makes
code more legible. But be careful. These are not C’s variables, there are
no types, and the only memory allocation is what’s explained above!

Where might it not be possible or sensible to use variables?

E.g. if your desired output is two lists of a hundred numbers each!
Or worse, two lists of length determined at run-time.

John Lapinskas Hack Assembly I 11 / 11


