
Hack assembly II: Loops and conditionals
COMSM1302 Overview of Computer Architecture

John Lapinskas, University of Bristol

John Lapinskas Hack Assembly II 1 / 11



A terror from the past

So far, we can compute simple expressions like (RAM[3] + RAM[4]) &
RAM[5], but we don’t have a “real computer” yet. Hack assembly as
we’ve covered it so far is more like a calculator attached to a clock.

We need loops and conditionals, but we don’t have ifs or while loops.

Let’s instead discuss something... older. Darker. Hungrier.

Source: Randall Munroe, xkcd (here)

John Lapinskas Hack Assembly II 2 / 11

https://xkcd.com/292/


A terror from the past

So far, we can compute simple expressions like (RAM[3] + RAM[4]) &
RAM[5], but we don’t have a “real computer” yet. Hack assembly as
we’ve covered it so far is more like a calculator attached to a clock.

We need loops and conditionals, but we don’t have ifs or while loops.

Let’s instead discuss something... older. Darker. Hungrier.

Source: Randall Munroe, xkcd (here)

John Lapinskas Hack Assembly II 2 / 11

https://xkcd.com/292/


A terror from the past

So far, we can compute simple expressions like (RAM[3] + RAM[4]) &
RAM[5], but we don’t have a “real computer” yet. Hack assembly as
we’ve covered it so far is more like a calculator attached to a clock.

We need loops and conditionals, but we don’t have ifs or while loops.

Let’s instead discuss something... older. Darker. Hungrier.

Source: Randall Munroe, xkcd (here)

John Lapinskas Hack Assembly II 2 / 11

https://xkcd.com/292/


Gotos in C

In C, a goto statement allows you to “jump” from anywhere in the code
to a specific label.

In this code, on executing goto skip on line 5, the code skips the print
statement on line 6 and resumes after skip: on line 8, returning 0.

John Lapinskas Hack Assembly II 3 / 11



Using gotos for loops and conditionals

All flow control in C can be expressed as gotos and one-line if statements!

becomes

So why use whiles and elses instead of gotos?

John Lapinskas Hack Assembly II 4 / 11



Using gotos for loops and conditionals

All flow control in C can be expressed as gotos and one-line if statements!

becomes

So why use whiles and elses instead of gotos?

John Lapinskas Hack Assembly II 4 / 11



Using gotos for loops and conditionals

All flow control in C can be expressed as gotos and one-line if statements!

becomes

So why use whiles and elses instead of gotos?

John Lapinskas Hack Assembly II 4 / 11



Using gotos for loops and conditionals

All flow control in C can be expressed as gotos and one-line if statements!

becomes

So why use whiles and elses instead of gotos?

John Lapinskas Hack Assembly II 4 / 11



Go to statement considered harmful

Gotos are completely unrestricted (within a function). You can use them
to simulate loops this way, but you can goto one label from 20 different
places in a 10,000-line function.

If you see a loop or an if statement in someone’s C code, you know exactly
what it will do to the control flow. But if you see a label, the code could
jump to that label from anywhere.

The use of ifs and whiles and function calls to control program flow is
known as structured programming and rose to prominence in the 1960s.
Before that, none of them existed and all flow control was with gotos.
Now, it’s the foundation of all software engineering as a discipline.

There are a very few situations in which gotos are still somewhat
reasonable to use in C, but it’s best avoided unless you know what you’re
doing and can fight off a velociraptor or two.

(The slide title comes from Edsger W. Dijkstra’s seminal 1968 article, which coined the term
“structured programming” and set the movement going.)

John Lapinskas Hack Assembly II 5 / 11



Go to statement considered harmful

Gotos are completely unrestricted (within a function). You can use them
to simulate loops this way, but you can goto one label from 20 different
places in a 10,000-line function.

If you see a loop or an if statement in someone’s C code, you know exactly
what it will do to the control flow. But if you see a label, the code could
jump to that label from anywhere.

The use of ifs and whiles and function calls to control program flow is
known as structured programming and rose to prominence in the 1960s.
Before that, none of them existed and all flow control was with gotos.
Now, it’s the foundation of all software engineering as a discipline.

There are a very few situations in which gotos are still somewhat
reasonable to use in C, but it’s best avoided unless you know what you’re
doing and can fight off a velociraptor or two.

(The slide title comes from Edsger W. Dijkstra’s seminal 1968 article, which coined the term
“structured programming” and set the movement going.)

John Lapinskas Hack Assembly II 5 / 11



Go to statement considered harmful

Gotos are completely unrestricted (within a function). You can use them
to simulate loops this way, but you can goto one label from 20 different
places in a 10,000-line function.

If you see a loop or an if statement in someone’s C code, you know exactly
what it will do to the control flow. But if you see a label, the code could
jump to that label from anywhere.

The use of ifs and whiles and function calls to control program flow is
known as structured programming and rose to prominence in the 1960s.
Before that, none of them existed and all flow control was with gotos.
Now, it’s the foundation of all software engineering as a discipline.

There are a very few situations in which gotos are still somewhat
reasonable to use in C, but it’s best avoided unless you know what you’re
doing and can fight off a velociraptor or two.

(The slide title comes from Edsger W. Dijkstra’s seminal 1968 article, which coined the term
“structured programming” and set the movement going.)

John Lapinskas Hack Assembly II 5 / 11



Go to statement considered harmful

Gotos are completely unrestricted (within a function). You can use them
to simulate loops this way, but you can goto one label from 20 different
places in a 10,000-line function.

If you see a loop or an if statement in someone’s C code, you know exactly
what it will do to the control flow. But if you see a label, the code could
jump to that label from anywhere.

The use of ifs and whiles and function calls to control program flow is
known as structured programming and rose to prominence in the 1960s.
Before that, none of them existed and all flow control was with gotos.
Now, it’s the foundation of all software engineering as a discipline.

There are a very few situations in which gotos are still somewhat
reasonable to use in C, but it’s best avoided unless you know what you’re
doing and can fight off a velociraptor or two.

(The slide title comes from Edsger W. Dijkstra’s seminal 1968 article, which coined the term
“structured programming” and set the movement going.)

John Lapinskas Hack Assembly II 5 / 11



The horrible truth

John Lapinskas Hack Assembly II 6 / 11



Gotos in Hack: Jumps

In assembly, gotos with simple if statements are usually the only form of
flow control we have.

We call them jumps or branches to make it clear that each one comes
from a single machine code instruction.

Any instruction in Hack assembly not starting with @ can be followed by a
semicolon and one of seven jump instructions. This reads as “if [result of
instruction] satisfies [condition], goto the ROM address contained in A”.

For example, M=A+D;JGT stores A+ D in M, then jumps to the address
contained in A if A+ D > 0.

You can also omit the left-hand side of the instruction to jump without
assigning any values, e.g. A+D;JGT is valid assembly that jumps to the
address contained in A if A+ D > 0.

John Lapinskas Hack Assembly II 7 / 11



List of jump conditions in Hack

Condition Mnemonic Jumps if
JMP JuMP Always
JGT Jump if Greater Than [result] > 0
JEQ Jump if EQual [result] = 0
JLT Jump if Less Than [result] < 0
JGE Jump if Greater than or Equal [result] ≥ 0
JNE Jump if Not Equal [result] ̸= 0
JLE Jump if Less than or Equal [result] ≤ 0

Don’t try to memorise this table — just refer back as needed!

Remember, all jumps are to the address stored in A.

Warning: The PC is updated at the same time as A, at the start of the
next clock cycle! An instruction like A=A+D;JMP has undefined behaviour.

John Lapinskas Hack Assembly II 8 / 11



Help from the assembler: Labels

Each (non-comment) line of assembly is one line of machine code. So to
unconditionally jump to line 100 of (non-comment/whitespace) assembly,
stored in ROM[99], we would use @99 followed by e.g. 0;JMP.

(We normally write 0;JMP for a jump with no calculation attached, but
this is a convention, not a requirement.)

Problem: This is awful to maintain. What if we need to delete one of
lines 1–99? Or add another line? We need to update every jump in the file!

Solution: Like with C, the assembler provides labels.

A line of the form (Label) doesn’t correspond to any machine code.
Instead, if the next line would appear at e.g. ROM position 100, then it
tells the assembler to replace all instances of @Label with @100.

John Lapinskas Hack Assembly II 9 / 11



Help from the assembler: Labels

Each (non-comment) line of assembly is one line of machine code. So to
unconditionally jump to line 100 of (non-comment/whitespace) assembly,
stored in ROM[99], we would use @99 followed by e.g. 0;JMP.

(We normally write 0;JMP for a jump with no calculation attached, but
this is a convention, not a requirement.)

Problem: This is awful to maintain. What if we need to delete one of
lines 1–99? Or add another line? We need to update every jump in the file!

Solution: Like with C, the assembler provides labels.

A line of the form (Label) doesn’t correspond to any machine code.
Instead, if the next line would appear at e.g. ROM position 100, then it
tells the assembler to replace all instances of @Label with @100.

John Lapinskas Hack Assembly II 9 / 11



Help from the assembler: Labels

Each (non-comment) line of assembly is one line of machine code. So to
unconditionally jump to line 100 of (non-comment/whitespace) assembly,
stored in ROM[99], we would use @99 followed by e.g. 0;JMP.

(We normally write 0;JMP for a jump with no calculation attached, but
this is a convention, not a requirement.)

Problem: This is awful to maintain. What if we need to delete one of
lines 1–99? Or add another line? We need to update every jump in the file!

Solution: Like with C, the assembler provides labels.

A line of the form (Label) doesn’t correspond to any machine code.
Instead, if the next line would appear at e.g. ROM position 100, then it
tells the assembler to replace all instances of @Label with @100.

John Lapinskas Hack Assembly II 9 / 11



Example: Computing a sum

Sum.asm outputs to RAM[1] a sum of all the integers from 0 to RAM[0]:

RAM[0] (input) RAM[1] (output)

0 0
1 0 + 1 = 1
2 0 + 1 + 2 = 3
3 0 + 1 + 2 + 3 = 6
...

...

[See video for live coding and explanation.]

John Lapinskas Hack Assembly II 10 / 11



What is a “real” computer anyway?

A Turing machine is a two-sided infinite string of tape divided into cells
containing binary values, plus a tape head and a collection of (finitely
many) possible states. At each time step, based on the current cell and its
internal state, the tape head writes a 1 or 0 and moves left or right along
the tape, and then the Turing machine changes state or halts. E.g.:

1 0 1 1 0 · · ·· · ·

John Lapinskas Hack Assembly II 11 / 11



What is a “real” computer anyway?

A Turing machine is a two-sided infinite string of tape divided into cells
containing binary values, plus a tape head and a collection of (finitely
many) possible states. At each time step, based on the current cell and its
internal state, the tape head writes a 1 or 0 and moves left or right along
the tape, and then the Turing machine changes state or halts. E.g.:

1 0 1 1 0 · · ·· · ·
Machine in state 3, head
reads 1 −→ Write 0, move
right, enter state 3.

John Lapinskas Hack Assembly II 11 / 11



What is a “real” computer anyway?

A Turing machine is a two-sided infinite string of tape divided into cells
containing binary values, plus a tape head and a collection of (finitely
many) possible states. At each time step, based on the current cell and its
internal state, the tape head writes a 1 or 0 and moves left or right along
the tape, and then the Turing machine changes state or halts. E.g.:

1 0 0 1 0 · · ·· · ·
Machine in state 3, head
reads 1 −→ Write 0, move
right, enter state 3.

John Lapinskas Hack Assembly II 11 / 11



What is a “real” computer anyway?

A Turing machine is a two-sided infinite string of tape divided into cells
containing binary values, plus a tape head and a collection of (finitely
many) possible states. At each time step, based on the current cell and its
internal state, the tape head writes a 1 or 0 and moves left or right along
the tape, and then the Turing machine changes state or halts. E.g.:

1 0 0 1 0 · · ·· · ·
Machine in state 3, head
reads 1 −→ Write 0, move
right, enter state 3.

John Lapinskas Hack Assembly II 11 / 11



What is a “real” computer anyway?

A Turing machine is a two-sided infinite string of tape divided into cells
containing binary values, plus a tape head and a collection of (finitely
many) possible states. At each time step, based on the current cell and its
internal state, the tape head writes a 1 or 0 and moves left or right along
the tape, and then the Turing machine changes state or halts. E.g.:

1 0 0 0 0 · · ·· · ·
Machine in state 3, head
reads 1 −→ Write 0, move
right, enter state 3.

John Lapinskas Hack Assembly II 11 / 11



What is a “real” computer anyway?

A Turing machine is a two-sided infinite string of tape divided into cells
containing binary values, plus a tape head and a collection of (finitely
many) possible states. At each time step, based on the current cell and its
internal state, the tape head writes a 1 or 0 and moves left or right along
the tape, and then the Turing machine changes state or halts. E.g.:

1 0 0 0 0 · · ·· · ·
Machine in state 3, head
reads 1 −→ Write 0, move
right, enter state 3.

John Lapinskas Hack Assembly II 11 / 11



What is a “real” computer anyway?

A Turing machine is a two-sided infinite string of tape divided into cells
containing binary values, plus a tape head and a collection of (finitely
many) possible states. At each time step, based on the current cell and its
internal state, the tape head writes a 1 or 0 and moves left or right along
the tape, and then the Turing machine changes state or halts. E.g.:

1 0 0 0 0 · · ·· · ·
Machine in state 3, head
reads 0 −→ Write 1, move
left, enter state 7.

John Lapinskas Hack Assembly II 11 / 11



What is a “real” computer anyway?

A Turing machine is a two-sided infinite string of tape divided into cells
containing binary values, plus a tape head and a collection of (finitely
many) possible states. At each time step, based on the current cell and its
internal state, the tape head writes a 1 or 0 and moves left or right along
the tape, and then the Turing machine changes state or halts. E.g.:

1 0 0 0 1 · · ·· · ·
Machine in state 3, head
reads 0 −→ Write 1, move
left, enter state 7.

John Lapinskas Hack Assembly II 11 / 11



What is a “real” computer anyway?

A Turing machine is a two-sided infinite string of tape divided into cells
containing binary values, plus a tape head and a collection of (finitely
many) possible states. At each time step, based on the current cell and its
internal state, the tape head writes a 1 or 0 and moves left or right along
the tape, and then the Turing machine changes state or halts. E.g.:

1 0 0 0 1 · · ·· · ·
Machine in state 3, head
reads 0 −→ Write 1, move
left, enter state 7.

John Lapinskas Hack Assembly II 11 / 11



What is a “real” computer anyway?

A Turing machine is a two-sided infinite string of tape divided into cells
containing binary values, plus a tape head and a collection of (finitely
many) possible states. At each time step, based on the current cell and its
internal state, the tape head writes a 1 or 0 and moves left or right along
the tape, and then the Turing machine changes state or halts. E.g.:

1 0 0 0 1 · · ·· · ·
Machine in state 7, head
reads 0 −→ Write 1, move
left, enter state 1.

John Lapinskas Hack Assembly II 11 / 11



What is a “real” computer anyway?

A Turing machine is a two-sided infinite string of tape divided into cells
containing binary values, plus a tape head and a collection of (finitely
many) possible states. At each time step, based on the current cell and its
internal state, the tape head writes a 1 or 0 and moves left or right along
the tape, and then the Turing machine changes state or halts. E.g.:

1 0 0 1 1 · · ·· · ·
Machine in state 7, head
reads 0 −→ Write 1, move
left, enter state 1.

John Lapinskas Hack Assembly II 11 / 11



What is a “real” computer anyway?

A Turing machine is a two-sided infinite string of tape divided into cells
containing binary values, plus a tape head and a collection of (finitely
many) possible states. At each time step, based on the current cell and its
internal state, the tape head writes a 1 or 0 and moves left or right along
the tape, and then the Turing machine changes state or halts. E.g.:

1 0 0 1 1 · · ·· · ·
Machine in state 7, head
reads 0 −→ Write 1, move
left, enter state 1.

John Lapinskas Hack Assembly II 11 / 11



What is a “real” computer anyway?

A Turing machine is a two-sided infinite string of tape divided into cells
containing binary values, plus a tape head and a collection of (finitely
many) possible states. At each time step, based on the current cell and its
internal state, the tape head writes a 1 or 0 and moves left or right along
the tape, and then the Turing machine changes state or halts. E.g.:

1 0 0 1 1 · · ·· · ·
Machine in state 1, head
reads 0 −→ Write 0, move
right, enter state 10.

John Lapinskas Hack Assembly II 11 / 11



What is a “real” computer anyway?

A Turing machine is a two-sided infinite string of tape divided into cells
containing binary values, plus a tape head and a collection of (finitely
many) possible states. At each time step, based on the current cell and its
internal state, the tape head writes a 1 or 0 and moves left or right along
the tape, and then the Turing machine changes state or halts. E.g.:

1 0 0 1 1 · · ·· · ·
Machine in state 1, head
reads 0 −→ Write 0, move
right, enter state 10.

John Lapinskas Hack Assembly II 11 / 11



What is a “real” computer anyway?

A Turing machine is a two-sided infinite string of tape divided into cells
containing binary values, plus a tape head and a collection of (finitely
many) possible states. At each time step, based on the current cell and its
internal state, the tape head writes a 1 or 0 and moves left or right along
the tape, and then the Turing machine changes state or halts. E.g.:

1 0 0 1 1 · · ·· · ·
Machine in state 10, head
reads 1 −→ Halt.

John Lapinskas Hack Assembly II 11 / 11



What is a “real” computer anyway?

A Turing machine is a two-sided infinite string of tape divided into cells
containing binary values, plus a tape head and a collection of (finitely
many) possible states. At each time step, based on the current cell and its
internal state, the tape head writes a 1 or 0 and moves left or right along
the tape, and then the Turing machine changes state or halts. E.g.:

1 0 0 1 1 · · ·· · ·
Machine in state 10, head
reads 1 −→ Halt.

Note: The above definition is non-examinable! So don’t worry if you didn’t
follow it exactly.

(The rest of the slide will be examinable, though.)

John Lapinskas Hack Assembly II 11 / 11



What is a “real” computer anyway?

A Turing machine is a two-sided infinite string of tape divided into cells
containing binary values, plus a tape head and a collection of (finitely
many) possible states. At each time step, based on the current cell and its
internal state, the tape head writes a 1 or 0 and moves left or right along
the tape, and then the Turing machine changes state or halts. E.g.:

1 0 0 1 1 · · ·· · ·
Machine in state 10, head
reads 1 −→ Halt.

Why care? Because the Church-Turing thesis says that if a computing
problem is solvable, then a well-chosen Turing machine can solve it. Write
the input on the tape, run it until it halts, read the tape for the output.

So if we can simulate any Turing machine, we have a “real” computer! We
say a computer model which can do this is Turing-complete.

John Lapinskas Hack Assembly II 11 / 11



What is a “real” computer anyway?

A Turing machine is a two-sided infinite string of tape divided into cells
containing binary values, plus a tape head and a collection of (finitely
many) possible states. At each time step, based on the current cell and its
internal state, the tape head writes a 1 or 0 and moves left or right along
the tape, and then the Turing machine changes state or halts. E.g.:

1 0 0 1 1 · · ·· · ·
Machine in state 10, head
reads 1 −→ Halt.

Why care? Because the Church-Turing thesis says that if a computing
problem is solvable, then a well-chosen Turing machine can solve it. Write
the input on the tape, run it until it halts, read the tape for the output.

So if we can simulate any Turing machine, we have a “real” computer! We
say a computer model which can do this is Turing-complete.

Note: Not all computing problems are solvable! It is impossible to tell
whether an arbitrary Turing machine ever halts (the Halting Problem).

John Lapinskas Hack Assembly II 11 / 11


