COMSM1302 Overview of Computer Architecture University of Bristol

Week 5 assignment: Hack assembly practice (part 1)

1 Why are there two parts?

The first part of this assignment, on this sheet, covers what you need to know for the exam. The second part is a
collection of harder questions for practice and revision. You should try very hard to have the first part complete
before the start of week 8 as from that point onwards everything in the unit will be built on your understanding of
assembly. Don’t worry if you don’t finish the second part, though, we intentionally put more on there than would be
reasonable for a week’s work!

2 Tasks

1. Write some basic Hack assembly programs.
2. Learn to test and debug code using the Hack assembler and CPU emulator.
3. Learn about bit masking.

4. Learn to use the screen and keyboard in Hack assembly.

3 Required software

For this lab, you will need the assembler and CPU emulator from the nand2tetris software suite. The demonstrations
in the video lectures should give you a good idea of how to use this software, and the software and documentation are
both available from the unit page here. All of it runs on Windows, Linux and Mac OS, although we can’t guarantee
full support for Mac OS in this unit because we don’t have a good test environment.

In labs, you can run this software by opening a terminal and entering “module load nand2tetris” followed
by “Assembler.sh &” and “CPUEmulator.sh &”.

In order to run this software (and anything else from the nand2tetris suite) on your home computer, you will need
to download and install it yourself. As with Logisim, you will need to install the Java Runtime Environment if you
haven’t already — see here. If you are getting an error about javaw.exe being missing, the most likely reason is that
you don’t have the Java Runtime Environment installed.

4 Getting started

You’ll start with some simple tasks to get used to the basic functionality of the assembler and CPU emulator.

* Load the pre-existing assembly program add. asm from lectures (available from the unit page). Turn it into a
file add.hack using the assembler.

¢ Load add.hack in the CPU emulator. In the emulator, write 3 into RAM[0] and 4 into RAM[1] and run the
code using the run” button (the double arrow). Hopefully, it will store 24 in RAM[2].

* Notice how slowly the emulator is running. Try adjusting the animation speed slider in the top bar to make it
faster — you can clear memory for a second run using the button just above the RAM display. (Don’t be the
guy from a previous year who complained after test 2 that the practical part was totally unreasonable because
the emulator was far too slow...!)

* You should also try setting the “Animate:” dropdown to “No animation” for no delay at all. This can be useful
for larger files, but it will prevent you from editing values in RAM, and the RAM values the emulator
displays will not update while the program is running. This is a common gotcha — don’t let it catch you out
in the exam.



https://cs-uob-overview-of-architecture.github.io/software#nand2tetris
https://cs-uob-overview-of-architecture.github.io/software#logiexam

COMSM1302 Overview of Computer Architecture University of Bristol

 Rather than using the assembler, try loading add.asm into the CPU emulator directly. It works just fine, it’s a
lot faster in an exam, and in fact this is often the better way to do things as explained in the next section. But
understanding viscerally that the assembler can translate a .asm file into machine code which can be loaded into
ROM directly is important — when we talk about how the hardware works in week 7, it will be reading machine
code, not assembly, and in week 8 we will talk about how the assembler itself works. The assembler can also be
useful for debugging, again as we’ll see in the next section.

Now try writing some code of your own. Write a Hack assembly program sub.asm that subtracts RAM[1] from
RAM[0] and stores the result in RAM[2]. You may assume there is no integer overflow. If you’re having trouble with
this, take another look at add.asm and video 5-2. Test it in the CPU emulator.

In these labs, there’s another way of testing code as well that runs it through multiple test cases — go to codestuff.online
here and paste it in. It’ll give you a good indication whether your solution is correct, but once you’ve found a test case
that fails, it’s still easiest to debug that test case using the CPU emulator.

S Multiplication and debugging

Now you’ll try writing a slightly more complex program. It will probably fail the first time you run it, because
programming is hard. Do not try to debug it yet, but instead move on to the next part of the section to learn what
tools you have available. At the end we’ll circle back to get it working.

Your goal is to write a Hack assembly program mult . asm that multiplies RAM[0] by RAM[1] and stores the result in
RAM][2]. You may assume there is no integer overflow and that both RAM[0] and RAM[1] are non-negative. Before
you start writing, work out how you would do this in C without using the = operator. Then translate that C code
into assembly — video 5.3 is a useful reference here for how to translate loops and conditionals into Hack. Everyone
writes code differently, and you don’t have to keep working this way after this exercise, but in John’s experience it’s
very helpful. Doing things this way lets you think about “what do I need to do?” separately from “how do I express
that in Hack?”, and he finds it lets him work significantly faster as a result unless what he’s trying to do is very easy
relative to his experience with Hack. The pseudocode also gives you a useful set of comments to navigate through
your code when you start debugging, and it’s helpful to start thinking about the process of “compiling” code from one
language to another early in the unit.

Before you test your multiplication code, download odd . asm from the unit page. This code contains some inten-
tionally planted bugs — you’ll fix these to learn about the available debugging tools. odd . asm is intended to behave
as follows. RAM[0] will be a positive number. Store RAM[0] in RAM[1] if RAM[0] is odd, and otherwise store 42.

e First try loading odd . asm into the CPU emulator directly. You should get an unhelpful error message. When-
ever the CPU emulator refuses to load an asm file, this is because the assembly is malformed in some way —
there’s a syntax error. To find out where, fire up the assembler and click the “Fast translation” button (second
from the right at the top bar) — this is much faster than stepping through line-by-line. This should highlight the
line with the problem. Fix it, then repeat the process until the asm file successfully compiles into a hack file.

* At this point, you no longer need the assembler and can work with the CPU emulator directly. Open odd. asm
in the CPU emulator, and go to the dropdown just above the ROM display and toggle it between “Asm” and
“Sym”. In “Asm” mode, the ROM display shows the assembly code as executed by the CPU from a hack
file, with all variables replaced by RAM addresses, all labels replaced by RAM addresses, and all comments
removed. In “Sym” (symbolic) mode, the ROM display shows the assembly code as written in the original
file, with variable names intact and label names displayed by their corresponding ROM address. End-of-line
comments are also shown.

¢ Using “Asm” and “Sym” mode, find the bug in the test case RAM[0] = 501, which should store 42 in RAM[1].
You’ll find the “single step” and “step back” buttons on the top bar helpful for this — note that the “step back”
button is only active outside “No animation” mode.

While this particular bug is a little mean and artificial, this type of bug is a very common issue in Hack assembly
code and you should know what the symptoms are. Find it, fix it, and get this test case working.


https://codestuff.online/problem/8

COMSM1302 Overview of Computer Architecture University of Bristol

 Now look at the test case of RAM[0] = 500, which should output 500. First run the test case with no animation
to get a quick answer, and notice that it’s wrong. But waiting for the whole loop to run is painfully time-
consuming, and nothing seems to go wrong in the first couple of iterations. The solution is to set a breakpoint,
a concept you’ve probably seen (or will see) in Overview of Software Tools.

— Switch the CPU emulator to symbolic mode to orient yourself in the code, and scroll down in ROM to the
end of the loop at ROM[15]. Right-click this word of memory — it should turn red.

— Now run the program in “No animation” mode. It should run to ROM[15] and then stop. Set the animation
mode back to “Program flow” so you can step backwards if you want to, then step through looking for the
point where things break.

— Find the bug and fix it.

Any decent IDE will let you set conditional breakpoints in your language of choice. They are a hugely useful
tool. You can also set conditional breakpoints by clicking the flag icon in the top bar — useful if something is
going wrong in iteration 357 of a 500-iteration loop.

Now go back to your multiplication code and test it on codestuff.online here. If it breaks, excellent! Use what you’ve
just learned to fix the bugs. If not, don’t worry, I’'m sure you’ll have an opportunity to try debugging for real soon
enough.

(Also, if you didn’t leave comments in your multiplication code, you’re probably regretting that fact now that you have
to fix a bug after some time away from it. Take this as a learning experience!)

6 Masking

Often we want to affect a binary word as binary, rather than as the number it contains — we want to flip some of its
bits, or set some of its bits to 1 or 0, or shift the whole thing a few places to the left or right. For this we use bitwise
operations. These work just like multi-input gates from the first part of the unit —if x = 1 ... x1g6andy = y;1 ... Y16
are 16-bit words, then e.g. the 7’th bit of x Ay is z; A y;. Any reasonable modern programming language will give you
access to bitwise NOT, AND, OR, and XOR operations; in C the operators for these are , &, | and ~, respectively.
Hack assembly gives you access to bitwise NOT, AND and OR.

We use AND operations to set bits low, using the fact that x; A 0 = 0 for any value of z;. To try this out, write
an assembly program and . asm that counts the number of bits of RAMI[0] that are set to 1, then writes the result to
RAM][1] — for example, if RAM[0] = 11 = 051011, then RAM[1] should be set to 3. When testing your code in the
CPU emulator, you may find it useful to set the “Format” to binary in the top-right of the window to see the individual
bits of words in memory.

Codestuff.online link: Here!

In much the same way, we use OR operations to set bits high, using the fact that x; A 1 = 1 for any value of z;, and
XOR operations to toggle bits, using the fact that x; & 1 = 1 — z; for any value of x;. Hack doesn’t give you a direct
XOR command, but of course this shouldn’t stop you from using XORs — you can always build them out of ANDs,
ORs and NOTs. To try this out, write an assembly program xor .asm that flips the third and fifth-most significant
bits of RAM[1] if RAM[O0] is divisible by 256 (i.e. if all of the eight least significant bits of RAMJ[0] are zero). For
example, given an input of RAMI[0] = 512 = 0x0200, if RAM[1] = 2831 = 0xOBOF initially, then RAM[1] should
be changed to 8975 = 0x230F.

Codestuff.online link: Here!

Whenever we AND, OR or XOR an unknown word with a fixed word to change the values of certain bits, we call the
fixed word a mask. When a bit is used to store a boolean variable, we call it a £1ag; setting that bit to 1 is called
setting the flag, and setting it to zero is called clearing the flag.


https://codestuff.online/problem/5
https://codestuff.online/problem/24
https://codestuff.online/problem/27

COMSM1302 Overview of Computer Architecture University of Bristol

(a) The checkerboard pattern while “c” is not held. (b) The checkerboard pattern while “c” is held.

Figure 1: Left: Examples of the checkerboard patterns for Section 7.

7 Input and output in Hack

You should definitely review the video on writing to the screen and reading from the keyboard before you try this
section!

First, as a proof of concept, write a program checkerl.asm that behaves as follows. While no key is pressed, the
top-left pixel of the screen should be coloured black and all other pixels should be coloured white. While the “c” key is
pressed and held, the bottom-right pixel of the screen should be coloured black and all other pixels should be coloured
white. Some points to be careful of:

* As explained in lectures, @x commands are only valid when x is a variable, a label, or a 15-bit positive integer
— so e.g. @65535 is not valid Hack even though 65535 = OxFFFF fits in a word of Hack memory. When
outputting to the screen, you’ll often need to set memory to 16-bit integers, so you should use either masking or
negation (M=-M or similar).

« If your first attempt puts the pixels in the wrong position on the screen, stop, go back over the video, and
think. Don’t just start trying stuff blindly.

* To test your program in the emulator, you should run it in “no animation” mode. For keyboard input, click
the keyboard button below the screen output while the program is running. You will probably find conditional
breakpoints useful for debugging!

Codestuff.online link: Here!

Now write a program checker?2 . asm that behaves as follows. While no key is pressed, the screen should be filled
with a checkerboard pattern as shown in Figure 1. The top-left pixel of the screen should always be black. While the
“c” key is held, the screen should be filled with the opposite checkerboard pattern, with the top-left pixel of the screen
coloured white. The top-left pixel should be coloured correctly no matter when “c” is pressed.

Before you start writing your code, you should work out exactly what values you need to write to which RAM
addresses to display each pattern — check the video again if you need to. Test you’ve got that right by making a much
simpler tiny Hack program that writes those values manually to a few cells. This will save you a lot of pain if your
understanding of how screen output works is wrong.

Codestuff.online link: Here!

Since reading from the screen and writing to the keyboard requires you to understand memory indirection, conditionals,


https://codestuff.online/problem/25
https://codestuff.online/problem/21

COMSM1302 Overview of Computer Architecture University of Bristol

loops and binary representations, it’s a good overall test of your assembly skills, and there’s normally a 15-mark
question in the exam asking you to do something like this.



	Why are there two parts?
	Tasks
	Required software
	Getting started
	Multiplication and debugging
	Masking
	Input and output in Hack

