
The Hack instruction set architecture
COMSM1302 Overview of Computer Architecture

John Lapinskas, University of Bristol

John Lapinskas The Hack ISA 1 / 9

What is an ISA?

Physics
Transistors

Gates

Components

Computer microarchitecture
Instruction set architecture

Assembly

Intermediate representation

High-level language

Hardware

Software

The microarchitecture is the physical design of the computer in hardware
— circuit diagrams and PCB layouts.

The instruction set architecture (ISA) is the way the computer acts in
response to machine code instructions.

John Lapinskas The Hack ISA 2 / 9

What is an ISA?

Physics
Transistors

Gates

Components

Computer microarchitecture
Instruction set architecture

Assembly

Intermediate representation

High-level language

Hardware

Software

Once you’ve implemented a C function to a specification (e.g. “mult(x,y)
should return x×y”), you can use that function without needing to remem-
ber how you coded it. You can change the implementation, and as long as
it still returns x × y , you won’t introduce bugs.

John Lapinskas The Hack ISA 2 / 9

What is an ISA?

Physics
Transistors

Gates

Components

Computer microarchitecture
Instruction set architecture

Assembly

Intermediate representation

High-level language

Hardware

Software

In the same way, the microarchitecture implements the ISA. When you’re
writing assembly, you don’t need to know how the ISA is implemented, and
your code will work on any hardware implementation without bugs.

For example, modern CPUs from both AMD and Intel generally implement
the x86-64 ISA despite having very different microarchitectures.

John Lapinskas The Hack ISA 2 / 9

ISAs versus microarchitecture — a comparison

ISA properties Microarchitecture properties

Word length Clock speed
Machine code instructions Energy efficiency
Registers and memory ALU circuit design
I/O memory-mapping Connections between I/O and CPU

Execution model Response to unspecified behaviour
(e.g. fetch-execute cycle) (e.g. A=D;JMP)

...
...

We covered almost all of the Hack ISA already while covering Hack
assembly. All that’s missing is the machine code instructions (this video).

We’ve also covered most of the Hack microarchitecture in labs. Next
video, we’ll talk about what’s left.

Your assignment this week is to build a Hack CPU in Logisim!

John Lapinskas The Hack ISA 3 / 9

A-instructions

An address instruction or A-instruction is as follows:

@8 ↔ 0 000000000001000︸ ︷︷ ︸
8 in binary

Specifies A-instruction

The opcode of an instruction says what sort of instruction it is.
The operand(s) are arguments to it.

An A-instruction has an opcode of 0, followed by a single 15-bit operand.
It simply copies its operand into A. (Note this also sets M to RAM[A].)

This is why the @ command will only work with a 15-bit operand. There’s
no space in the instruction for more while still fitting in an opcode.

John Lapinskas The Hack ISA 4 / 9

C-instructions

A compute instruction or C-instruction is as follows:

111 1000010︸ ︷︷ ︸
comp

dest︷︸︸︷
110 111︸︷︷︸

jump

It has an opcode of 1, followed by two unused bits (which are set to 1 by
convention) and three operands:

comp specifies which computation to do.

dest specifies where the result should be stored.

jump specifies whether or not to update the program counter to A.

In the assembly instruction MD=A+D;JMP, comp corresponds to A+D, dest
corresponds to MD=, and jump corresponds to ;JMP.

John Lapinskas The Hack ISA 5 / 9

C-instructions: comp

With input bits ac1c2c3c4c5c6, the computation specified by comp is:

a = 0 a = 1 c1 c2 c3 c4 c5 c6
0 1 0 1 0 1 0

1 1 1 1 1 1 1

-1 1 1 1 0 1 0

D 0 0 1 1 0 0

A M 1 1 0 0 0 0

!D 0 0 1 1 0 1

!A !M 1 1 0 0 0 1

-D 0 0 1 1 1 1

-A -M 1 1 0 0 1 1

D+1 0 1 1 1 1 1

A+1 M+1 1 1 0 1 1 1

D-1 0 0 1 1 1 0

A-1 M-1 1 1 0 0 1 0

D+A D+M 0 0 0 0 1 0

D-A D-M 0 1 0 0 1 1

A-D M-D 0 0 0 1 1 1

D&A D&M 0 0 0 0 0 0

D|A D|M 0 1 0 1 0 1

Notice that a chooses between A or M as an input.
John Lapinskas The Hack ISA 6 / 9

C-instructions: dest

With input bits d1d2d3, the destination specified by dest is:

Destination d1 d2 d3
[None] 0 0 0

M= 0 0 1

D= 0 1 0

DM= 0 1 1

A= 1 0 0

AM= 1 0 1

AD= 1 1 0

ADM= 1 1 1

If d1 is high, the computation result is stored in A. Likewise for d2 and D,
and for d3 and M. If all three bits are low, the result is not stored.

John Lapinskas The Hack ISA 7 / 9

C-instructions: jump

With input bits j1j2j3, the jump condition specified by jump is:

Condition j1 j2 j3
[None] 0 0 0

;JGT 0 0 1

;JEQ 0 1 0

;JGE 0 1 1

;JLT 1 0 0

;JNE 1 0 1

;JLE 1 1 0

;JMP 1 1 1

The CPU jumps (i.e. stores A in the program counter) if:

j1 is high and the computation is negative; or

j2 is high and the computation is zero; or

j3 is high and the computation is positive.

John Lapinskas The Hack ISA 8 / 9

C-instructions: Two examples

Machine code: 1110101010000111

comp: 0101010, i.e. 0
dest: 000, i.e. none
jump: 111, i.e. ;JMP

Assembly: 0;JMP

Machine code: 1111000010101000

comp: 1000010, i.e. D+M
dest: 101, i.e. AM=
jump: 000, i.e. none

Assembly: AM=D+M

Go back and look at the design of the ALU from labs. Compare the
behaviour of comp to that of the ALU output out.

Do you see how the ALU can be used to implement a C-instruction?

(Don’t memorise any of these tables — just use them as a reference.
You’ll have access to a copy of them in the exam!)

John Lapinskas The Hack ISA 9 / 9

C-instructions: Two examples

Machine code: 1110101010000111

comp: 0101010, i.e. 0

dest: 000, i.e. none
jump: 111, i.e. ;JMP

Assembly: 0;JMP

Machine code: 1111000010101000

comp: 1000010, i.e. D+M
dest: 101, i.e. AM=
jump: 000, i.e. none

Assembly: AM=D+M

Go back and look at the design of the ALU from labs. Compare the
behaviour of comp to that of the ALU output out.

Do you see how the ALU can be used to implement a C-instruction?

(Don’t memorise any of these tables — just use them as a reference.
You’ll have access to a copy of them in the exam!)

John Lapinskas The Hack ISA 9 / 9

C-instructions: Two examples

Machine code: 1110101010000111

comp: 0101010, i.e. 0
dest: 000, i.e. none

jump: 111, i.e. ;JMP

Assembly: 0;JMP

Machine code: 1111000010101000

comp: 1000010, i.e. D+M
dest: 101, i.e. AM=
jump: 000, i.e. none

Assembly: AM=D+M

Go back and look at the design of the ALU from labs. Compare the
behaviour of comp to that of the ALU output out.

Do you see how the ALU can be used to implement a C-instruction?

(Don’t memorise any of these tables — just use them as a reference.
You’ll have access to a copy of them in the exam!)

John Lapinskas The Hack ISA 9 / 9

C-instructions: Two examples

Machine code: 1110101010000111

comp: 0101010, i.e. 0
dest: 000, i.e. none
jump: 111, i.e. ;JMP

Assembly: 0;JMP

Machine code: 1111000010101000

comp: 1000010, i.e. D+M
dest: 101, i.e. AM=
jump: 000, i.e. none

Assembly: AM=D+M

Go back and look at the design of the ALU from labs. Compare the
behaviour of comp to that of the ALU output out.

Do you see how the ALU can be used to implement a C-instruction?

(Don’t memorise any of these tables — just use them as a reference.
You’ll have access to a copy of them in the exam!)

John Lapinskas The Hack ISA 9 / 9

C-instructions: Two examples

Machine code: 1110101010000111

comp: 0101010, i.e. 0
dest: 000, i.e. none
jump: 111, i.e. ;JMP

Assembly: 0;JMP

Machine code: 1111000010101000

comp: 1000010, i.e. D+M
dest: 101, i.e. AM=
jump: 000, i.e. none

Assembly: AM=D+M

Go back and look at the design of the ALU from labs. Compare the
behaviour of comp to that of the ALU output out.

Do you see how the ALU can be used to implement a C-instruction?

(Don’t memorise any of these tables — just use them as a reference.
You’ll have access to a copy of them in the exam!)

John Lapinskas The Hack ISA 9 / 9

C-instructions: Two examples

Machine code: 1110101010000111

comp: 0101010, i.e. 0
dest: 000, i.e. none
jump: 111, i.e. ;JMP

Assembly: 0;JMP

Machine code: 1111000010101000

comp: 1000010, i.e. D+M

dest: 101, i.e. AM=
jump: 000, i.e. none

Assembly: AM=D+M

Go back and look at the design of the ALU from labs. Compare the
behaviour of comp to that of the ALU output out.

Do you see how the ALU can be used to implement a C-instruction?

(Don’t memorise any of these tables — just use them as a reference.
You’ll have access to a copy of them in the exam!)

John Lapinskas The Hack ISA 9 / 9

C-instructions: Two examples

Machine code: 1110101010000111

comp: 0101010, i.e. 0
dest: 000, i.e. none
jump: 111, i.e. ;JMP

Assembly: 0;JMP

Machine code: 1111000010101000

comp: 1000010, i.e. D+M
dest: 101, i.e. AM=

jump: 000, i.e. none

Assembly: AM=D+M

Go back and look at the design of the ALU from labs. Compare the
behaviour of comp to that of the ALU output out.

Do you see how the ALU can be used to implement a C-instruction?

(Don’t memorise any of these tables — just use them as a reference.
You’ll have access to a copy of them in the exam!)

John Lapinskas The Hack ISA 9 / 9

C-instructions: Two examples

Machine code: 1110101010000111

comp: 0101010, i.e. 0
dest: 000, i.e. none
jump: 111, i.e. ;JMP

Assembly: 0;JMP

Machine code: 1111000010101000

comp: 1000010, i.e. D+M
dest: 101, i.e. AM=
jump: 000, i.e. none

Assembly: AM=D+M

Go back and look at the design of the ALU from labs. Compare the
behaviour of comp to that of the ALU output out.

Do you see how the ALU can be used to implement a C-instruction?

(Don’t memorise any of these tables — just use them as a reference.
You’ll have access to a copy of them in the exam!)

John Lapinskas The Hack ISA 9 / 9

C-instructions: Two examples

Machine code: 1110101010000111

comp: 0101010, i.e. 0
dest: 000, i.e. none
jump: 111, i.e. ;JMP

Assembly: 0;JMP

Machine code: 1111000010101000

comp: 1000010, i.e. D+M
dest: 101, i.e. AM=
jump: 000, i.e. none

Assembly: AM=D+M

Go back and look at the design of the ALU from labs. Compare the
behaviour of comp to that of the ALU output out.

Do you see how the ALU can be used to implement a C-instruction?

(Don’t memorise any of these tables — just use them as a reference.
You’ll have access to a copy of them in the exam!)

John Lapinskas The Hack ISA 9 / 9

C-instructions: Two examples

Machine code: 1110101010000111

comp: 0101010, i.e. 0
dest: 000, i.e. none
jump: 111, i.e. ;JMP

Assembly: 0;JMP

Machine code: 1111000010101000

comp: 1000010, i.e. D+M
dest: 101, i.e. AM=
jump: 000, i.e. none

Assembly: AM=D+M

Go back and look at the design of the ALU from labs. Compare the
behaviour of comp to that of the ALU output out.

Do you see how the ALU can be used to implement a C-instruction?

(Don’t memorise any of these tables — just use them as a reference.
You’ll have access to a copy of them in the exam!)

John Lapinskas The Hack ISA 9 / 9

