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The Hack microarchitecture

This week, your main assignment is to build a Hack computer in Logisim.
From next week, we’ll fully move on from hardware to software, and in
particular to the process of translating high-level languages into assembly.

The main focus here is on the computer itself — it’s not too hard to see
where Hack’s memory-mapped I/O would fit in, but this is non-examinable.

You’ve already built all the components you need, and for convenience
we’ve loaded model versions into the skeleton Logisim file.

We do recommend you use the Logisim built-in ROM, RAM and registers
rather than the ones you designed, to make it easier to view and edit the
contents in Logisim and actually test the CPU!
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Components: Memory

address outROM

in

address
out

load

RAM

64KB.

15-bit address space.

16-bit words.

out = ROM[address] unclocked.

Stores program to be executed.

64KB.1

15-bit address space.1

16-bit words.

out = RAM[address] unclocked.

Stores data.

On each clock tick, if load = 1,
update RAM[address] to in.

1 Normally Hack would have 32KB RAM in a 14-bit address space, but here we
use 64KB. Logisim can’t simulate a screen easily so we just store the pixels in
RAM[0x4000]–RAM[0x5xFFFF], using real memory instead of memory-mapping.
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Components: The CPU

Source: Nisan and Schocken

The CPU should follow the fetch-execute cycle as discussed earlier in the unit.

After each clock tick:

The CPU should execute the instruction input, ROM[pc], as machine code.

inM should contain the value of M (loaded from RAM).

pc should contain the value of the program counter.

addressM should contain the value of A.

If the CPU is writing to RAM, writeM should be 1 and outM should be the value
being written. Otherwise, writeM should be 0.

If reset is high, the PC should be set to zero. (No need to reset A or D.)

John Lapinskas The Hack microarchitecture 4 / 9



How the CPU fits in

Source: Nisan and Schocken
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CPU components: The program counter

in out

load inc reset

PC

At most one of the load , inc or reset inputs should be high at once.
in is a 16-bit input, and out is a 16-bit output.

On each clock cycle:

If reset = 1, set out ← 0.

If inc = 1, set out ← out + 1.

If load = 1, set out ← in.

(A normal register is the same, but without the inc or reset inputs.)
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CPU components: The ALU

Source: Nisan and Schocken (with minor adjustment)

The ALU is unclocked. It should compute out from x , y , zx , nx , zy , ny , f
and no as shown in the table on the next slide.

To evaluate the jump part of a C-instruction, you will need another
sub-circuit to check whether out is positive, negative, or zero.
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CPU components: The ALU

zx nx zy ny f no out
1 0 1 0 1 0 0

1 1 1 1 1 1 1

1 1 1 0 1 0 -1

0 0 1 1 0 0 x

1 1 0 0 0 0 y

0 0 1 1 0 1 !x

1 1 0 0 0 1 !y

0 0 1 1 1 1 -x

1 1 0 0 1 1 -y

0 1 1 1 1 1 x+1

1 1 0 1 1 1 y+1

0 0 1 1 1 0 x-1

1 1 0 0 1 0 y-1

0 0 0 0 1 0 x+y

0 1 0 0 1 1 x-y

0 0 0 1 1 1 y-x

0 0 0 0 0 0 x&y

0 1 0 1 0 1 x|y

Notice these inputs match c1c2c3c4c5c6 of comp in a C-instruction...
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Building the CPU

Source: Nisan and Schocken (with minor adjustment)

This is only one possible implementation!
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