
The Hack microarchitecture
COMSM1302 Overview of Computer Architecture

John Lapinskas, University of Bristol

John Lapinskas The Hack microarchitecture 1 / 9



The Hack microarchitecture

This week, your main assignment is to build a Hack computer in Logisim.
From next week, we’ll fully move on from hardware to software, and in
particular to the process of translating high-level languages into assembly.

The main focus here is on the computer itself — it’s not too hard to see
where Hack’s memory-mapped I/O would fit in, but this is non-examinable.

You’ve already built all the components you need, and for convenience
we’ve loaded model versions into the skeleton Logisim file.

We do recommend you use the Logisim built-in ROM, RAM and registers
rather than the ones you designed, to make it easier to view and edit the
contents in Logisim and actually test the CPU!

John Lapinskas The Hack microarchitecture 2 / 9



Components: Memory

address outROM

in

address
out

load

RAM

64KB.

15-bit address space.

16-bit words.

out = ROM[address] unclocked.

Stores program to be executed.

64KB.1

15-bit address space.1

16-bit words.

out = RAM[address] unclocked.

Stores data.

On each clock tick, if load = 1,
update RAM[address] to in.

1 Normally Hack would have 32KB RAM in a 14-bit address space, but here we
use 64KB. Logisim can’t simulate a screen easily so we just store the pixels in
RAM[0x4000]–RAM[0x5xFFFF], using real memory instead of memory-mapping.

John Lapinskas The Hack microarchitecture 3 / 9



Components: The CPU

Source: Nisan and Schocken

The CPU should follow the fetch-execute cycle as discussed earlier in the unit.

After each clock tick:

The CPU should execute the instruction input, ROM[pc], as machine code.

inM should contain the value of M (loaded from RAM).

pc should contain the value of the program counter.

addressM should contain the value of A.

If the CPU is writing to RAM, writeM should be 1 and outM should be the value
being written. Otherwise, writeM should be 0.

If reset is high, the PC should be set to zero. (No need to reset A or D.)

John Lapinskas The Hack microarchitecture 4 / 9



How the CPU fits in

Source: Nisan and Schocken

John Lapinskas The Hack microarchitecture 5 / 9



CPU components: The program counter

in out

load inc reset

PC

At most one of the load , inc or reset inputs should be high at once.
in is a 16-bit input, and out is a 16-bit output.

On each clock cycle:

If reset = 1, set out ← 0.

If inc = 1, set out ← out + 1.

If load = 1, set out ← in.

(A normal register is the same, but without the inc or reset inputs.)

John Lapinskas The Hack microarchitecture 6 / 9



CPU components: The ALU

Source: Nisan and Schocken (with minor adjustment)

The ALU is unclocked. It should compute out from x , y , zx , nx , zy , ny , f
and no as shown in the table on the next slide.

To evaluate the jump part of a C-instruction, you will need another
sub-circuit to check whether out is positive, negative, or zero.

John Lapinskas The Hack microarchitecture 7 / 9



CPU components: The ALU

zx nx zy ny f no out
1 0 1 0 1 0 0

1 1 1 1 1 1 1

1 1 1 0 1 0 -1

0 0 1 1 0 0 x

1 1 0 0 0 0 y

0 0 1 1 0 1 !x

1 1 0 0 0 1 !y

0 0 1 1 1 1 -x

1 1 0 0 1 1 -y

0 1 1 1 1 1 x+1

1 1 0 1 1 1 y+1

0 0 1 1 1 0 x-1

1 1 0 0 1 0 y-1

0 0 0 0 1 0 x+y

0 1 0 0 1 1 x-y

0 0 0 1 1 1 y-x

0 0 0 0 0 0 x&y

0 1 0 1 0 1 x|y

Notice these inputs match c1c2c3c4c5c6 of comp in a C-instruction...

John Lapinskas The Hack microarchitecture 8 / 9



Building the CPU

Source: Nisan and Schocken (with minor adjustment)

This is only one possible implementation!

John Lapinskas The Hack microarchitecture 9 / 9


