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What to look for in a new ISA

Size of words in memory. (A “64-bit” CPU means a 64-bit word size.)

Address space of memory.

Instruction length (normally a multiple of word size, may be variable!)

Design philosophy: Harvard vs von Neumann, RISC vs CISC.

Registers.

Addressing modes.

Available arithmetic, logical, and branching operations.

Hardware interrupts.

The stack (covered later in the unit).

Note that most assembly languages use a slightly different-looking syntax
to Hack, putting the operand first. For example, in MIPS, the Hack
command A=D+M would be written add A,D,M.

This is cosmetic — one line of assembly still corresponds to one machine
code instruction. Hack’s syntax is because it only has two instructions!
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Harvard vs von Neumann

Source: Nisan and Schocken

Hack reads instructions from ROM and stores data in RAM. Having two
separate memory banks makes it an example of Harvard architecture.
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Harvard vs von Neumann

RAM CPU

pc

instruction

addressM

outM

writeM

inM

Most modern ISAs instead follow von Neumann architecture, storing both
instructions and data in the same memory, which is RAM.

(The main advantage of Harvard architecture is simpler hardware!)
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RISC vs CISC

Reduced Instruction Set Computing (RISC) Complex Instruction Set Computing (CISC)

Requires simple microarchitecture Requires complex microarchitecture

Assembly uses many simple instructions Assembly uses few complex instructions

Less efficient memory use More efficient memory use

Fixed-length instructions Variable-length instructions

Instructions mostly take 1 cycle each Instructions take any number of cycles

ISA has “standard” features only ISA has “extra” features (e.g. execution modes)

RISC and CISC are not absolute or rigorous definitions, but two ends of a
spectrum. Some ISAs are more RISC-like, and others are more CISC-like.

Usually for modern CPUs, CISC runs code faster than RISC. RISC is still
widely-used for low-power, low-cost applications (e.g. embedded hardware).

Historically, this has gone back and forth — in 2000, RISC was better for
high-speed applications as well.
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Registers

In Hack:

PC is the programme counter;

M is the memory register;

A the address register that controls M.

All these are special-purpose registers. They have special roles in the
hardware and limited access to ALU operations. Typically these are
ISA-specific — e.g. non-Hack ISAs don’t have equivalents of A and M.

Almost all ISAs have a PC , but many call it the instruction register (IR).

D is the opposite, a general-purpose register. These can fill any role in
ALU operations, and most architectures have 32 or more.

All general-purpose registers in an ISA behave the same way, and they’re
direct analogues of D.
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Addressing modes

An addressing mode defines how an ISA maps the operands of an
instruction to data. Hack has the three most common:

Immediate addressing interprets the operand as data.

@511 ↔ 0x01FF interprets the operand 511 as the number 511.
In ARM7, LDR R0, #0xDEADBEEF loads the value 0xDEADBEEF into
register R0.
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An addressing mode defines how an ISA maps the operands of an
instruction to data. Hack has the three most common:

Immediate addressing interprets the operand as data.

Direct addressing interprets the operand as the data’s location.

Indirect addressing interprets the operand as the location of a
pointer to the data.

M=D+1 ↔ 0xE7C8 interprets the dest operand to mean that D + 1
should be stored at the memory address stored in A. (The D + 1 part
of the instruction is an example of direct addressing.)
In ARM7, LDR R0, [R1] reads register R1, reads the memory at that
address, and stores the result in R0.
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Addressing modes

An addressing mode defines how an ISA maps the operands of an
instruction to data. Hack has the three most common:

Immediate addressing interprets the operand as data.

Direct addressing interprets the operand as the data’s location.

Indirect addressing interprets the operand as the location of a
pointer to the data.

CISC ISAs often have other addressing modes for increased efficiency. For
example, ARM7 supports indexed indirect addressing.

Given the instruction LDR R0, [R1, #0xBEEF], ARM7 will read the ad-
dress stored in R1, add 0xBEEF to it, then store the value stored at that
memory address in R0.

This is useful for arrays — if R1 is the address of an array arr in C, then
LDR R0, [R1, #0xBEEF] stores arr[0xBEEF] in R0 in one instruction!
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Common ISAs: x64

Source: PCMag (Pictured: AMD Ryzen 9 7900 with fan.)

Most modern 64-bit desktop and laptop computers run the x64 ISA, a.k.a.
x86-64 and AMD64.

(Intel did develop their own 64-bit architecture, IA-64 a.k.a. Itanium, but
it was discontinued in 2019 and they now use x64 too.)

x64 is far towards CISC. CPUs running it are typically very fast and
efficient, but also expensive, power-hungry, and need a lot of cooling.
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Common ISAs: ARM

Source: Apple (Pictured: iPhone 13)

ARM is a family of 64-bit and 32-bit ISAs geared towards portable use.

ARM is further towards RISC than x64. Chipsets using it usually have
lower power and cooling requirements, but are slower and less efficient.

Almost all modern mobiles and tablets use ARM. Modern Macs also use a
variant of ARM developed by Apple for higher-power applications.

The company responsible, Arm Holdings, is actually based in Bristol!
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Common ISAs: MIPS

Source: Microchip Technology Incorporated

Source: Super Mario Wiki
(Screenshot from Super Mario 64)

MIPS is a family of simple RISC ISAs used in embedded applications.

For example, PIC chips (pictured) typically cost £3–£10 per unit, run at
15–120MHz, and at the low end have power drain comparable to a LED.

The Nintendo 64 ran a variant of MIPS as well — hence the bunny’s name!
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Advanced feature: Hardware interrupts

Recall Hack input works by polling — reading RAM[0x6000] returns a
value representing the key being pressed at that moment (if any).

Problem: Polling sucks! It wastes a huge number of clock cycles and (at
lower clock speeds) risks missing inputs.

Solution: All modern ISAs use interrupts for input:

The CPU has one or more dedicated pins for an interrupt signal on
the hardware level, e.g. from a key being pressed.

On receiving an interrupt signal, the CPU stops what it’s doing, saves
its current PC value, and immediately branches to a new location
containing code to deal with that interrupt.

After handling the input, the CPU restores its original PC value and
picks up execution where it left off.

Interrupts are also used for other things, like attempts to access protected
memory (a.k.a. why you get segfaults when your pointers go wrong).
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