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Pipelining by analogy

Suppose you’ve let things pile up and you have many batches of laundry.

For one load, the washing machine takes 2 hours, the tumble dryer takes 3
hours, and ironing and folding takes 1 hour. How do you do it?

The moral: By parallelising where we can to avoid letting components sit
idle, we can massively increase throughput! This is called pipelining.
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The ideal of pipelining

The main barrier to increasing a CPU’s clock speed is propagation delay:
The time taken for signals to pass through gates and assume stable values.

For C-instructions in Hack, we could divide the fetch-execute cycle into
four stages (some of which would be skipped for A-instructions):

Fetch: Fetch the next instruction from ROM[PC].

Decode: Set the inputs for the ALU to the appropriate values.

Execute: Set the outputs of the ALU to the appropriate values.

Writeback: Write values to RAM and registers, update PC.

Each stage uses different hardware, so we can set the clock speed to the
propagation delay of the slowest stage, rather than of the entire
fetch-execute cycle!

Modern CPUs have more complex pipelines than this, but the same
principles hold and these four stages are still a good basic framework.
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The ideal of pipelining

So our fetch-execute cycle would become:

Fetch Decode Execute Writeback

Fetch Decode Execute Writeback

Fetch Decode Execute Writeback

Fetch Decode Execute Writeback

Instruction 1

Instruction 2

Instruction 3

Instruction 4

...

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 · · ·

What could go wrong?
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The reality of pipelining: Stalls and hazards

Data hazards arise when an instruction needs access to data
modified by an earlier instruction that hasn’t finished evaluating.

E.g. D=D+1 followed by A=A+D. The second instruction needs the new
value of D from the first instruction.

Conditional hazards arise at a conditional branch. The next
instruction to be loaded into the pipeline will depend on whether or
not the branch occurs.

E.g. after M;JEQ, the next instruction might be at either ROM[PC + 1]
or ROM[A].

Structural hazards arise when two instructions need access to the
same physical resource, e.g. both using the same parts of the ALU.
(These would not be an issue in creating a pipeline for Hack.)

Any of these hazards can lead to a stall (a.k.a. bubble), where the rest of
the pipeline stops moving until the offending instruction completes.

Avoiding and mitigating stalls is a complex part of modern CPU design.
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What about multiple cores?

A CPU core is a self-contained circuit capable of executing machine code
instructions. The Hack CPU consists entirely of one core. Modern desktop
CPUs often have 4–16 cores. Modern GPUs have thousands.

With multiple cores, all these problems get much worse!

Source: Imgur (here)

Most benefits come from either the operating system dividing cores
between applications, or from the developer writing explicitly parallel code.
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Memory caching

AMD’s Zen 4 microarchitecture (used in Ryzen 7000 series CPUs) has
maximum clock speed 5.7GHz, i.e. 5.7× 109 CPU cycles per second.

That’s roughly 0.175ns per cycle.

How long does it take to retrieve a value from memory (the latency)?

Roughly 73.3ns, or 418 cycles.

We don’t want to do this (at least) once per fetch-execute cycle!
Why is it so slow?

A 16+GB address space means more complex electronics and
therefore more propagation delay.

16+GB of SRAM would be prohibitively expensive, so we use DRAM.

Physical distance from the chip! (Electricity moves at light speed,
which is roughly 3× 108m/s, so 3.33ns to move one metre...)

Modern CPUs address this with smaller, faster, closer memory caches.
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How caching works

Modern CPUs use three caches: L1, L2, and L3. For Zen 4 (roughly):

Data location Capacity Cycles to access Time to access
Registers 1.8KB/core1 1 0.175ns
L1 cache 64KB/core 4 0.7ns
L2 cache 1MB/core 14 2.45ns
L3 cache 4MB/core 50 8.75ns

DDR5 RAM 16–64GB 418 73ns
Fast SSD 0.5–4TB 140, 000 25µs
Fast HDD 0.5–4TB 28, 500, 000 5ms

Instructions are loaded into the L1 cache in advance. Where possible, at
conditional branches, we “look ahead” and load both possible options.

Otherwise, the most frequently used data (e.g. memory used for common
variables) goes to the L1 cache, then L2, then L3, then main memory.

Minimising the number of accesses to main memory (“cache misses”) is a very
important part of both CPU design and code optimisation.

1This is for the 224 integer registers — there are a few hundred others as well.
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Applications of architecture: Predication

Understanding pipelining tells us ifs and loops require branches, which
create control hazards and are disproportionately slow.

But evaluating a logical expression to 0 or 1 doesn’t create a control
hazard. It might create a data hazard, but it’s still faster overall. E.g.:

becomes

This technique is called predication or branchless programming.

As with inserting assembly fragments, it’s only a good idea for code you
already know is a performance bottleneck. Otherwise it’s not worth the
bugs, the time spent, or the loss of clarity and maintainability.

(Modern compilers are also smart, so you may do more harm than good!)
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Applications of architecture: Loop unrolling

Loop unrolling is the practice of writing out several iterations of a simple
loop by hand to minimise the number of branches. For example:

becomes

Say count = 500. Then the left code will use count+1 = 501 conditional
branches. The right code will only use (1+count/8)+(1+count%8) = 68.
(We’ve also saved 500 addition operations by removing i .)
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The code above is (a version of) Duff’s device. Its creator, Tom Duff, said:

“Many people (even [Brian Kernighan]?) have said that the worst feature of C is
that switches don’t break automatically before each case label. This code forms
some sort of argument in that debate, but I’m not sure whether it’s for or against.”
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