
Compiler concepts: Lexing
COMSM1302 Overview of Computer Architecture

John Lapinskas, University of Bristol

John Lapinskas Lexing 1 / 9

Our next goal

Physics
Transistors

Gates

Components

Computer microarchitecture
Instruction set architecture

Assembly

Intermediate representation

High-level language

Hardware

Software

We now understand both Hack assembly and the Hack ISA, and we can
use an assembler to turn assembly into machine code.

But how does the assembler work?

This week, our goal is to create a Hack assembler of our own in C!

John Lapinskas Lexing 2 / 9

Our next goal

Physics
Transistors

Gates

Components

Computer microarchitecture
Instruction set architecture

Assembly

Intermediate representation

High-level language

Hardware

Software

We now understand both Hack assembly and the Hack ISA, and we can
use an assembler to turn assembly into machine code.

But how does the assembler work?

This week, our goal is to create a Hack assembler of our own in C!

John Lapinskas Lexing 2 / 9

Our next goal

Physics
Transistors

Gates

Components

Computer microarchitecture
Instruction set architecture

Assembly

Intermediate representation

High-level language

Hardware

Software

We now understand both Hack assembly and the Hack ISA, and we can
use an assembler to turn assembly into machine code.

But how does the assembler work?

This week, our goal is to create a Hack assembler of our own in C!

John Lapinskas Lexing 2 / 9

Compilers: A big-picture view

Modern compilers usually work in discrete phases:

More optimisation

Code generation

Optimisation

Intermediate representation

Semantic analysis

Parsing/syntax analysis

Lexing

Preprocessing

Preprocessing is a set of language-specific steps to e.g. link code files
together and execute compiler macros. In C, this includes reading the
makefile and processing e.g. #includes and #defines. Optimising is the
process of automatically turning inefficient code into efficient code.

Both preprocessing and optimisation are beyond the scope of this unit.

John Lapinskas Lexing 3 / 9

Compilers: A big-picture view

Modern compilers usually work in discrete phases:

More optimisation

Code generation

Optimisation

Intermediate representation

Semantic analysis

Parsing/syntax analysis

Lexing

Preprocessing

Preprocessing is a set of language-specific steps to e.g. link code files
together and execute compiler macros. In C, this includes reading the
makefile and processing e.g. #includes and #defines. Optimising is the
process of automatically turning inefficient code into efficient code.

Both preprocessing and optimisation are beyond the scope of this unit.

John Lapinskas Lexing 3 / 9

Compilers: A big-picture view

Modern compilers usually work in discrete phases:

More optimisation

Code generation

Optimisation

Intermediate representation

Semantic analysis

Parsing/syntax analysis

Lexing

Preprocessing

Preprocessing is a set of language-specific steps to e.g. link code files
together and execute compiler macros. In C, this includes reading the
makefile and processing e.g. #includes and #defines. Optimising is the
process of automatically turning inefficient code into efficient code.

Both preprocessing and optimisation are beyond the scope of this unit.

John Lapinskas Lexing 3 / 9

Compilers: A big-picture view

Code generation

Intermediate representation

Semantic analysis

Parsing/syntax analysis

Lexing

Most compilers take the information they extracted from semantic analysis
and put it into an intermediate representation (IR) of the code. They
then optimise the IR rather than the original code.

IRs are intended for use by computers rather than humans, and are quite
close to assembly. Optimising the IR is “the hard part” of optimisation.

Many languages can compile to a single IR — e.g. LLVM is used in
compilers for C#, Java bytecode, Ruby and Rust.

We’ll see an IR for Hack starting next week, but a line of assembly already
maps to one line of machine code, so for an assembler there’s no point!

John Lapinskas Lexing 4 / 9

Compilers: A big-picture view

Code generation

Intermediate representation

Semantic analysis

Parsing/syntax analysis

Lexing

Most compilers take the information they extracted from semantic analysis
and put it into an intermediate representation (IR) of the code. They
then optimise the IR rather than the original code.

IRs are intended for use by computers rather than humans, and are quite
close to assembly. Optimising the IR is “the hard part” of optimisation.

Many languages can compile to a single IR — e.g. LLVM is used in
compilers for C#, Java bytecode, Ruby and Rust.

We’ll see an IR for Hack starting next week, but a line of assembly already
maps to one line of machine code, so for an assembler there’s no point!

John Lapinskas Lexing 4 / 9

Compilers: A big-picture view

Code generation

Semantic analysis

Parsing/syntax analysis

Lexing

Syntax refers to the logical structure of language or code. For example:

“The trophy wouldn’t fit in the case because it was too big.”

A syntax analysis would tell you that “trophy” and “case” are nouns, that
the sentence breaks into two clauses, and generally anything you wanted to
know about the sentence’s grammar.

John Lapinskas Lexing 5 / 9

Compilers: A big-picture view

Code generation

Semantic analysis

Parsing/syntax analysis

Lexing

Syntax refers to the logical structure of language or code. For example:

strcpy(x,"Test");

A syntax analysis would tell you that this is a call to a function called
“strcpy” whose first argument is a variable called “x” and whose second
argument is the string “Test”.

Syntax analysis can get very complicated, but it’s a very well-understood
problem and there are many standard algorithms and approaches.

The process of syntax analysis is called parsing.

John Lapinskas Lexing 5 / 9

Compilers: A big-picture view

Code generation

Semantic analysis

Parsing/syntax analysis

Lexing

Semantics refers to the wider meaning of language or code. For example:

“The trophy wouldn’t fit in the case because it was too big.”

A semantic analysis tells you that “it” refers to the trophy, not the case. The
sentence is valid English either way, but there’s only one sane interpretation.

John Lapinskas Lexing 5 / 9

Compilers: A big-picture view

Code generation

Semantic analysis

Parsing/syntax analysis

Lexing

Semantics refers to the meaning of language or code. For example:

strcpy(x,"Test");

A semantic analysis tells you that strcpy isn’t defined (because the pro-
grammer forgot to #include <string.h>) and that x is a char * variable,
but that there’s a bug which makes it point to unallocated memory if the
system time is exactly midnight.

Semantic analysis is really hard! Some aspects (like type-checking) are well-
understood, but automatic bug-checking (“verification”) is a research area.

John Lapinskas Lexing 5 / 9

Compilers: A big-picture view

Code generation

Semantic analysis

Parsing/syntax analysis

Lexing

For an assembler, though, syntax and semantics are almost identical, and
it’s common to fold semantic analysis into lexing and parsing.

John Lapinskas Lexing 5 / 9

Compilers: A big-picture view

Code generation

Semantic analysis

Parsing and code generation

Lexing

For an assembler, though, syntax and semantics are almost identical, and
it’s common to fold semantic analysis into lexing and parsing.

And without complicated semantics, there’s no need to separate code gen-
eration from parsing — we can just go line-by-line.

John Lapinskas Lexing 5 / 9

Compilers: A big-picture view

Code generation

Semantic analysis

Parsing and code generation

Lexing

For an assembler, though, syntax and semantics are almost identical, and
it’s common to fold semantic analysis into lexing and parsing.

And without complicated semantics, there’s no need to separate code gen-
eration from parsing — we can just go line-by-line.

Our Hack assembler will have just two steps: lexing and parsing.

Even this will be overkill for Hack assembly! But we’ll do it in detail to
establish the principles involved.

John Lapinskas Lexing 5 / 9

The Joy of Lex

A token (a.k.a. lexeme or lexical element) is an “indivisible” piece of
code that can’t be broken down further without losing its meaning.

In English, the closest analogy is to words and punctuation:

Never | gonna | give | you | up | , | never | gonna | let | you | down | .

Lexing is the process of converting a string of code into a list of tokens.
Normally this just involves removing whitespace and comparing strings.

The list of possible tokens is given in the specification of a programming
language, along with the grammar for putting them together to form
statements (see later this week). C’s specification is available here.

What counts as a token is a choice by the language creators, not a
universal standard! E.g. in Java comments and whitespace are tokens, but
in C they’re not.

John Lapinskas Lexing 6 / 9

http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1570.pdf

The Joy of Lex

A token (a.k.a. lexeme or lexical element) is an “indivisible” piece of
code that can’t be broken down further without losing its meaning.

In English, the closest analogy is to words and punctuation:

Never | gonna | give | you | up | , | never | gonna | let | you | down | .

Lexing is the process of converting a string of code into a list of tokens.
Normally this just involves removing whitespace and comparing strings.

The list of possible tokens is given in the specification of a programming
language, along with the grammar for putting them together to form
statements (see later this week). C’s specification is available here.

What counts as a token is a choice by the language creators, not a
universal standard! E.g. in Java comments and whitespace are tokens, but
in C they’re not.

John Lapinskas Lexing 6 / 9

http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1570.pdf

The Joy of Lex

A token (a.k.a. lexeme or lexical element) is an “indivisible” piece of
code that can’t be broken down further without losing its meaning.

In English, the closest analogy is to words and punctuation:

Never | gonna | give | you | up | , | never | gonna | let | you | down | .

Lexing is the process of converting a string of code into a list of tokens.
Normally this just involves removing whitespace and comparing strings.

The list of possible tokens is given in the specification of a programming
language, along with the grammar for putting them together to form
statements (see later this week). C’s specification is available here.

What counts as a token is a choice by the language creators, not a
universal standard! E.g. in Java comments and whitespace are tokens, but
in C they’re not.

John Lapinskas Lexing 6 / 9

http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1570.pdf

Tokens in Hack assembly

Nisan and Schocken don’t give a grammar for Hack assembly, but we can
create one. We take as tokens:

Keywords:
‘A’, ‘D’, ‘M’,
‘JGT’, ‘JEQ’, ‘JLT’, ‘JGE’, ‘JNE’, ‘JLE’, ‘JMP’,
‘SCREEN’, ‘KBD’, ‘SP’, ‘LCL’, ‘ARG’, ‘THIS’, ‘THAT’,
and ‘R0’ through ‘R15’.

Symbols: ‘@’, ‘+’, ‘-’, ‘&’, ‘|’, ‘=’, ‘;’, and ‘!’.

Integer literals: Any base-10 integer in the range 0 . . . 32767.

Identifiers: Any string containing no whitespace that’s not a keyword
and starts with a letter.

Newlines.

John Lapinskas Lexing 7 / 9

Tokens in Hack assembly

Nisan and Schocken don’t give a grammar for Hack assembly, but we can
create one. We take as tokens:

Keywords:
‘A’, ‘D’, ‘M’,
‘JGT’, ‘JEQ’, ‘JLT’, ‘JGE’, ‘JNE’, ‘JLE’, ‘JMP’,
‘SCREEN’, ‘KBD’, ‘SP’, ‘LCL’, ‘ARG’, ‘THIS’, ‘THAT’,
and ‘R0’ through ‘R15’.

Symbols: ‘@’, ‘+’, ‘-’, ‘&’, ‘|’, ‘=’, ‘;’, and ‘!’.

Integer literals: Any base-10 integer in the range 0 . . . 32767.

Identifiers: Any string containing no whitespace that’s not a keyword
and starts with a letter.

Newlines.

Notice e.g. ’A’ and ‘ARG’ are different keywords — we need to be a little
careful distinguishing between them. In general, a keyword is a string with
special meaning intrinsic to the language that usually can’t be redefined. C’s
keywords include e.g. const, int, for, and return, but not e.g. printf.

John Lapinskas Lexing 7 / 9

Tokens in Hack assembly

Nisan and Schocken don’t give a grammar for Hack assembly, but we can
create one. We take as tokens:

Keywords:
‘A’, ‘D’, ‘M’,
‘JGT’, ‘JEQ’, ‘JLT’, ‘JGE’, ‘JNE’, ‘JLE’, ‘JMP’,
‘SCREEN’, ‘KBD’, ‘SP’, ‘LCL’, ‘ARG’, ‘THIS’, ‘THAT’,
and ‘R0’ through ‘R15’.

Symbols: ‘@’, ‘+’, ‘-’, ‘&’, ‘|’, ‘=’, ‘;’, and ‘!’.

Integer literals: Any base-10 integer in the range 0 . . . 32767.

Identifiers: Any string containing no whitespace that’s not a keyword
and starts with a letter.

Newlines.

C calls these punctuators and operators, and includes several with multiple
symbols like ‘>=’, ‘==’, ‘%:’ and ‘%:%:’. (The latter two are synonyms of
‘#’ and ‘##’ for historical reasons.)

John Lapinskas Lexing 7 / 9

Tokens in Hack assembly

Nisan and Schocken don’t give a grammar for Hack assembly, but we can
create one. We take as tokens:

Keywords:
‘A’, ‘D’, ‘M’,
‘JGT’, ‘JEQ’, ‘JLT’, ‘JGE’, ‘JNE’, ‘JLE’, ‘JMP’,
‘SCREEN’, ‘KBD’, ‘SP’, ‘LCL’, ‘ARG’, ‘THIS’, ‘THAT’,
and ‘R0’ through ‘R15’.

Symbols: ‘@’, ‘+’, ‘-’, ‘&’, ‘|’, ‘=’, ‘;’, and ‘!’.

Integer literals: Any base-10 integer in the range 0 . . . 32767.

Identifiers: Any string containing no whitespace that’s not a keyword
and starts with a letter.

Newlines.

C calls these constants, and also has tokens for constant strings, floats,
enums and chars.

John Lapinskas Lexing 7 / 9

Tokens in Hack assembly

Nisan and Schocken don’t give a grammar for Hack assembly, but we can
create one. We take as tokens:

Keywords:
‘A’, ‘D’, ‘M’,
‘JGT’, ‘JEQ’, ‘JLT’, ‘JGE’, ‘JNE’, ‘JLE’, ‘JMP’,
‘SCREEN’, ‘KBD’, ‘SP’, ‘LCL’, ‘ARG’, ‘THIS’, ‘THAT’,
and ‘R0’ through ‘R15’.

Symbols: ‘@’, ‘+’, ‘-’, ‘&’, ‘|’, ‘=’, ‘;’, and ‘!’.

Integer literals: Any base-10 integer in the range 0 . . . 32767.

Identifiers: Any string containing no whitespace that’s not a keyword
and starts with a letter.

Newlines.

C has these too. Notice that we don’t distinguish between variables and
labels! In general, an identifier is a token representing an entity defined
in the code rather than the language, e.g. a specific variable, function, or
struct type. In C, printf is an identifier defined in the stdio library.

John Lapinskas Lexing 7 / 9

Tokens in Hack assembly

Nisan and Schocken don’t give a grammar for Hack assembly, but we can
create one. We take as tokens:

Keywords:
‘A’, ‘D’, ‘M’,
‘JGT’, ‘JEQ’, ‘JLT’, ‘JGE’, ‘JNE’, ‘JLE’, ‘JMP’,
‘SCREEN’, ‘KBD’, ‘SP’, ‘LCL’, ‘ARG’, ‘THIS’, ‘THAT’,
and ‘R0’ through ‘R15’.

Symbols: ‘@’, ‘+’, ‘-’, ‘&’, ‘|’, ‘=’, ‘;’, and ‘!’.

Integer literals: Any base-10 integer in the range 0 . . . 32767.

Identifiers: Any string containing no whitespace that’s not a keyword
and starts with a letter.

Newlines.

C ignores newlines completely, but we need them to be tokens — otherwise
we can’t distinguish e.g. A followed by D=M from AD=M.

John Lapinskas Lexing 7 / 9

Tokens in Hack assembly

Nisan and Schocken don’t give a grammar for Hack assembly, but we can
create one. We take as tokens:

Keywords:
‘A’, ‘D’, ‘M’,
‘JGT’, ‘JEQ’, ‘JLT’, ‘JGE’, ‘JNE’, ‘JLE’, ‘JMP’,
‘SCREEN’, ‘KBD’, ‘SP’, ‘LCL’, ‘ARG’, ‘THIS’, ‘THAT’,
and ‘R0’ through ‘R15’.

Symbols: ‘@’, ‘+’, ‘-’, ‘&’, ‘|’, ‘=’, ‘;’, and ‘!’.

Integer literals: Any base-10 integer in the range 0 . . . 32767.

Identifiers: Any string containing no whitespace that’s not a keyword
and starts with a letter.

Newlines.

Notice what’s missing! We throw whitespace and comments away, so they
don’t get tokens. We will also throw labels away without turning them into
tokens (see next video), so we don’t include ‘(’ or ‘)’ as symbols.

John Lapinskas Lexing 7 / 9

The benefits of lexing

Why bother with lexing?

Source: Generated with imgflip (here).

We can store tokens as nice clean structs and never have to fight with C’s
awful string handling again! (At least until code generation...)

John Lapinskas Lexing 8 / 9

https://imgflip.com/memegenerator/101945424/Guy-tapping-head

The benefits of lexing

Why bother with lexing?

Source: Generated with imgflip (here).

We can store tokens as nice clean structs and never have to fight with C’s
awful string handling again! (At least until code generation...)

John Lapinskas Lexing 8 / 9

https://imgflip.com/memegenerator/101945424/Guy-tapping-head

Example lexer output

Consider this Hack code from one of the test cases:

D;JGT // if D>0 goto output first

Your lexer will convert this to four Token structs:

Token 1: (type=Keyword, value=D)

Token 2: (type=Symbol, value=;)

Token 3: (type=Keyword, value=JGT)

Token 4: (type=Newline, value=None)

in which D and JGT are stored as enums and ‘;’ is stored as a char, then
call a write token function to store those tokens in a temporary file.

Your parser will then process that file instead of the original code, using a
read token function to read Token structs rather than strings.

Your lexer will also handle labels, which would normally be part of
semantic analysis — see next video!

John Lapinskas Lexing 9 / 9

Example lexer output

Consider this Hack code from one of the test cases:

D;JGT // if D>0 goto output first

Your lexer will convert this to four Token structs:

Token 1: (type=Keyword, value=D)

Token 2: (type=Symbol, value=;)

Token 3: (type=Keyword, value=JGT)

Token 4: (type=Newline, value=None)

in which D and JGT are stored as enums and ‘;’ is stored as a char, then
call a write token function to store those tokens in a temporary file.

Your parser will then process that file instead of the original code, using a
read token function to read Token structs rather than strings.

Your lexer will also handle labels, which would normally be part of
semantic analysis — see next video!

John Lapinskas Lexing 9 / 9

Example lexer output

Consider this Hack code from one of the test cases:

D;JGT // if D>0 goto output first

Your lexer will convert this to four Token structs:

Token 1: (type=Keyword, value=D)

Token 2: (type=Symbol, value=;)

Token 3: (type=Keyword, value=JGT)

Token 4: (type=Newline, value=None)

in which D and JGT are stored as enums and ‘;’ is stored as a char, then
call a write token function to store those tokens in a temporary file.

Your parser will then process that file instead of the original code, using a
read token function to read Token structs rather than strings.

Your lexer will also handle labels, which would normally be part of
semantic analysis — see next video!

John Lapinskas Lexing 9 / 9

