
Compiler concepts: Symbol tables
COMSM1302 Overview of Computer Architecture

John Lapinskas, University of Bristol

John Lapinskas Symbol tables 1 / 7

Tracking labels and variables

Recall in Hack assembly, @ can be followed by either a number, a label or a
variable. The assembler must:

0 @input1

1 D=M

2 @input2

3 D=D-M

4 @output first

5 D;JGT

6 @input2

7 D=M

8 @output d

9 0;JMP

10 (output first)

11 @input1

12 D=M

13 (output d)

14 @output val

15 M=D

16 (infinite loop)

17 @infinite loop

18 0;JMP

Allocate each variable a corresponding
address in RAM, starting from 16.

Replace variables by their addresses.

Assign each label the address in ROM
matching the machine code line of its
declaration.

Replace labels by their addresses.

Only then replace @ statements by
A-instructions.

We do this using “symbol tables”.

John Lapinskas Symbol tables 2 / 7

Tracking labels and variables

Recall in Hack assembly, @ can be followed by either a number, a label or a
variable. The assembler must:

0 @16

1 D=M

2 @input2

3 D=D-M

4 @output first

5 D;JGT

6 @input2

7 D=M

8 @output d

9 0;JMP

10 (output first)

11 @16

12 D=M

13 (output d)

14 @output val

15 M=D

16 (infinite loop)

17 @infinite loop

18 0;JMP

Allocate each variable a corresponding
address in RAM, starting from 16.

Replace variables by their addresses.

Assign each label the address in ROM
matching the machine code line of its
declaration.

Replace labels by their addresses.

Only then replace @ statements by
A-instructions.

We do this using “symbol tables”.

John Lapinskas Symbol tables 2 / 7

Tracking labels and variables

Recall in Hack assembly, @ can be followed by either a number, a label or a
variable. The assembler must:

0 @16

1 D=M

2 @17

3 D=D-M

4 @output first

5 D;JGT

6 @17

7 D=M

8 @output d

9 0;JMP

10 (output first)

11 @16

12 D=M

13 (output d)

14 @output val

15 M=D

16 (infinite loop)

17 @infinite loop

18 0;JMP

Allocate each variable a corresponding
address in RAM, starting from 16.

Replace variables by their addresses.

Assign each label the address in ROM
matching the machine code line of its
declaration.

Replace labels by their addresses.

Only then replace @ statements by
A-instructions.

We do this using “symbol tables”.

John Lapinskas Symbol tables 2 / 7

Tracking labels and variables

Recall in Hack assembly, @ can be followed by either a number, a label or a
variable. The assembler must:

0 @16

1 D=M

2 @17

3 D=D-M

4 @output first

5 D;JGT

6 @17

7 D=M

8 @output d

9 0;JMP

10 (output first)

11 @16

12 D=M

13 (output d)

14 @18

15 M=D

16 (infinite loop)

17 @infinite loop

18 0;JMP

Allocate each variable a corresponding
address in RAM, starting from 16.

Replace variables by their addresses.

Assign each label the address in ROM
matching the machine code line of its
declaration.

Replace labels by their addresses.

Only then replace @ statements by
A-instructions.

We do this using “symbol tables”.

John Lapinskas Symbol tables 2 / 7

Tracking labels and variables

Recall in Hack assembly, @ can be followed by either a number, a label or a
variable. The assembler must:

0 @16

1 D=M

2 @17

3 D=D-M

4 @output first

5 D;JGT

6 @17

7 D=M

8 @output d

9 0;JMP

10 (output first)

11 @16

12 D=M

13 (output d)

14 @18

15 M=D

16 (infinite loop)

17 @infinite loop

18 0;JMP

Allocate each variable a corresponding
address in RAM, starting from 16.

Replace variables by their addresses.

Assign each label the address in ROM
matching the machine code line of its
declaration.

Replace labels by their addresses.

Only then replace @ statements by
A-instructions.

We do this using “symbol tables”.

John Lapinskas Symbol tables 2 / 7

Tracking labels and variables

Recall in Hack assembly, @ can be followed by either a number, a label or a
variable. The assembler must:

0 @16

1 D=M

2 @17

3 D=D-M

4 @10

5 D;JGT

6 @17

7 D=M

8 @output d

9 0;JMP

10 (output first)

10 @16

11 D=M

12 (output d)

13 @18

14 M=D

15 (infinite loop)

16 @infinite loop

17 0;JMP

Allocate each variable a corresponding
address in RAM, starting from 16.

Replace variables by their addresses.

Assign each label the address in ROM
matching the machine code line of its
declaration.

Replace labels by their addresses.

Only then replace @ statements by
A-instructions.

We do this using “symbol tables”.

John Lapinskas Symbol tables 2 / 7

Tracking labels and variables

Recall in Hack assembly, @ can be followed by either a number, a label or a
variable. The assembler must:

0 @16

1 D=M

2 @17

3 D=D-M

4 @10

5 D;JGT

6 @17

7 D=M

8 @output d

9 0;JMP

10 @16

11 D=M

12 (output d)

13 @18

14 M=D

15 (infinite loop)

16 @infinite loop

17 0;JMP

Allocate each variable a corresponding
address in RAM, starting from 16.

Replace variables by their addresses.

Assign each label the address in ROM
matching the machine code line of its
declaration.

Replace labels by their addresses.

Only then replace @ statements by
A-instructions.

We do this using “symbol tables”.

John Lapinskas Symbol tables 2 / 7

Tracking labels and variables

Recall in Hack assembly, @ can be followed by either a number, a label or a
variable. The assembler must:

0 @16

1 D=M

2 @17

3 D=D-M

4 @10

5 D;JGT

6 @17

7 D=M

8 @12

9 0;JMP

10 @16

11 D=M

12 (output d)

12 @18

13 M=D

14 (infinite loop)

15 @infinite loop

16 0;JMP

Allocate each variable a corresponding
address in RAM, starting from 16.

Replace variables by their addresses.

Assign each label the address in ROM
matching the machine code line of its
declaration.

Replace labels by their addresses.

Only then replace @ statements by
A-instructions.

We do this using “symbol tables”.

John Lapinskas Symbol tables 2 / 7

Tracking labels and variables

Recall in Hack assembly, @ can be followed by either a number, a label or a
variable. The assembler must:

0 @16

1 D=M

2 @17

3 D=D-M

4 @10

5 D;JGT

6 @17

7 D=M

8 @12

9 0;JMP

10 @16

11 D=M

12 @18

13 M=D

14 (infinite loop)

15 @infinite loop

16 0;JMP

Allocate each variable a corresponding
address in RAM, starting from 16.

Replace variables by their addresses.

Assign each label the address in ROM
matching the machine code line of its
declaration.

Replace labels by their addresses.

Only then replace @ statements by
A-instructions.

We do this using “symbol tables”.

John Lapinskas Symbol tables 2 / 7

Tracking labels and variables

Recall in Hack assembly, @ can be followed by either a number, a label or a
variable. The assembler must:

0 @16

1 D=M

2 @17

3 D=D-M

4 @10

5 D;JGT

6 @17

7 D=M

8 @12

9 0;JMP

10 @16

11 D=M

12 @18

13 M=D

14 (infinite loop)

14 @14

15 0;JMP

Allocate each variable a corresponding
address in RAM, starting from 16.

Replace variables by their addresses.

Assign each label the address in ROM
matching the machine code line of its
declaration.

Replace labels by their addresses.

Only then replace @ statements by
A-instructions.

We do this using “symbol tables”.

John Lapinskas Symbol tables 2 / 7

Tracking labels and variables

Recall in Hack assembly, @ can be followed by either a number, a label or a
variable. The assembler must:

0 @16

1 D=M

2 @17

3 D=D-M

4 @10

5 D;JGT

6 @17

7 D=M

8 @12

9 0;JMP

10 @16

11 D=M

12 @18

13 M=D

14 @14

15 0;JMP

Allocate each variable a corresponding
address in RAM, starting from 16.

Replace variables by their addresses.

Assign each label the address in ROM
matching the machine code line of its
declaration.

Replace labels by their addresses.

Only then replace @ statements by
A-instructions.

We do this using “symbol tables”.

John Lapinskas Symbol tables 2 / 7

Tracking labels and variables

Recall in Hack assembly, @ can be followed by either a number, a label or a
variable. The assembler must:

0 @16

1 D=M

2 @17

3 D=D-M

4 @10

5 D;JGT

6 @17

7 D=M

8 @12

9 0;JMP

10 @16

11 D=M

12 @18

13 M=D

14 @14

15 0;JMP

Allocate each variable a corresponding
address in RAM, starting from 16.

Replace variables by their addresses.

Assign each label the address in ROM
matching the machine code line of its
declaration.

Replace labels by their addresses.

Only then replace @ statements by
A-instructions.

We do this using “symbol tables”.

John Lapinskas Symbol tables 2 / 7

Identifiers and symbol tables

An identifier is a catch-all term for a token whose meaning is defined in
the code itself rather than the language.

In Hack, our identifiers are labels and variables — in the statement
@output first, we know what @ means, but the we can only translate
output first by looking for its definition.

In C, the names of functions are also identifiers.

A symbol table is a data structure mapping the names of identifiers to
their meanings.

In Hack, we will have one symbol table for labels (mapping each label
name to its ROM address) and one for variables (mapping each variable
name to its RAM address).

In C, a symbol table would also include e.g. the type of a variable and the
arguments of a function. (The historical need to fill symbol tables
efficiently is why function headers exist.)

John Lapinskas Symbol tables 3 / 7

Identifiers and symbol tables

An identifier is a catch-all term for a token whose meaning is defined in
the code itself rather than the language.

In Hack, our identifiers are labels and variables — in the statement
@output first, we know what @ means, but the we can only translate
output first by looking for its definition.

In C, the names of functions are also identifiers.

A symbol table is a data structure mapping the names of identifiers to
their meanings.

In Hack, we will have one symbol table for labels (mapping each label
name to its ROM address) and one for variables (mapping each variable
name to its RAM address).

In C, a symbol table would also include e.g. the type of a variable and the
arguments of a function. (The historical need to fill symbol tables
efficiently is why function headers exist.)

John Lapinskas Symbol tables 3 / 7

Symbol tables in Hack: The goal

0 @input1

1 D=M

2 @input2

3 D=D-M

4 @output first

5 D;JGT

6 @input2

7 D=M

8 @output d

9 0;JMP

10 (output first)

11 @input1

12 D=M

13 (output d)

14 @output val

15 M=D

16 (infinite loop)

17 @infinite loop

18 0;JMP

Label table:

Name ROM address

output first 10
output d 12

infinite loop 14

Variables table:

Name RAM address

input1 16
input2 17

output val 18

John Lapinskas Symbol tables 4 / 7

How do symbol tables work?

A symbol table must support the following operations:

Add a new name and address to the table.

Check if a name is in the table.

If a name is in the table, retrieve the corresponding address.

The right way to implement this is with a hash table, which you’ll see in
Programming in C in a few weeks. But you can do it less efficiently with a
dynamically-sized collection, which you’ve already seen. (How?)

This is a good C exercise but a bad architecture exercise, so we’ve done it
for you in the assignment — see symboltable.c and symboltable.h.

John Lapinskas Symbol tables 5 / 7

How do symbol tables work?

A symbol table must support the following operations:

Add a new name and address to the table.

Check if a name is in the table.

If a name is in the table, retrieve the corresponding address.

The right way to implement this is with a hash table, which you’ll see in
Programming in C in a few weeks. But you can do it less efficiently with a
dynamically-sized collection, which you’ve already seen. (How?)

This is a good C exercise but a bad architecture exercise, so we’ve done it
for you in the assignment — see symboltable.c and symboltable.h.

John Lapinskas Symbol tables 5 / 7

How do symbol tables work?

A symbol table must support the following operations:

Add a new name and address to the table.

Check if a name is in the table.

If a name is in the table, retrieve the corresponding address.

The right way to implement this is with a hash table, which you’ll see in
Programming in C in a few weeks. But you can do it less efficiently with a
dynamically-sized collection, which you’ve already seen. (How?)

This is a good C exercise but a bad architecture exercise, so we’ve done it
for you in the assignment — see symboltable.c and symboltable.h.

John Lapinskas Symbol tables 5 / 7

How do we fill symbol tables?

In assembly, filling symbol tables is simple enough to integrate with lexing
and parsing. (In e.g. C it would happen later, during semantic analysis.)

Both the label and variable tables start empty.

We can tell whether an identifier is a variable or label by looking for a label
declaration (label). So during lexing, we remove the label declarations
and add them to the label table with the correct ROM addresses.

(Recall label declarations have no tokens!)

Then in parsing, for each identifier we find, we check the symbol tables:

If it’s in the label table, hooray — substitute in the ROM address.

If it’s in the variable table, hooray — substitute in the RAM address.

If it’s in neither table, it must be the first occurrence of some
variable. So we add it to the variables table with the first unassigned
RAM address.

John Lapinskas Symbol tables 6 / 7

How do we fill symbol tables?

In assembly, filling symbol tables is simple enough to integrate with lexing
and parsing. (In e.g. C it would happen later, during semantic analysis.)

Both the label and variable tables start empty.

We can tell whether an identifier is a variable or label by looking for a label
declaration (label). So during lexing, we remove the label declarations
and add them to the label table with the correct ROM addresses.

(Recall label declarations have no tokens!)

Then in parsing, for each identifier we find, we check the symbol tables:

If it’s in the label table, hooray — substitute in the ROM address.

If it’s in the variable table, hooray — substitute in the RAM address.

If it’s in neither table, it must be the first occurrence of some
variable. So we add it to the variables table with the first unassigned
RAM address.

John Lapinskas Symbol tables 6 / 7

How do we fill symbol tables?

In assembly, filling symbol tables is simple enough to integrate with lexing
and parsing. (In e.g. C it would happen later, during semantic analysis.)

Both the label and variable tables start empty.

We can tell whether an identifier is a variable or label by looking for a label
declaration (label). So during lexing, we remove the label declarations
and add them to the label table with the correct ROM addresses.

(Recall label declarations have no tokens!)

Then in parsing, for each identifier we find, we check the symbol tables:

If it’s in the label table, hooray — substitute in the ROM address.

If it’s in the variable table, hooray — substitute in the RAM address.

If it’s in neither table, it must be the first occurrence of some
variable. So we add it to the variables table with the first unassigned
RAM address.

John Lapinskas Symbol tables 6 / 7

Advanced symbol tables: Scopes

In high-level languages, the compiler needs to track scopes. We build one symbol
table for each scope. After building the tables in semantic analysis, we could store
them in a stack (see Programming in C) as we convert code to IR form.

Table 1:
[Contains main, functions from stdio.h]

Table 2:
Name Type Address
foo double ***
i char ***

Table 3:
Name Type Address
i int ***

Table 4:
Name Type Address
i long ***

temp double ***

The compiler could start with table 1, push table 2 on line 3, push table 3 on line
6, pop on line 9, push table 4 on line 12, pop on line 16, then pop on line 21.John Lapinskas Symbol tables 7 / 7

Advanced symbol tables: Scopes

In high-level languages, the compiler needs to track scopes. We build one symbol
table for each scope. After building the tables in semantic analysis, we could store
them in a stack (see Programming in C) as we convert code to IR form.

Table 1:
[Contains main, functions from stdio.h]

Table 2:
Name Type Address
foo double ***
i char ***

Table 3:
Name Type Address
i int ***

Table 4:
Name Type Address
i long ***

temp double ***

To retrieve information about a variable, the compiler could then start with the
top-most table on the stack and work its way down, returning the first result.John Lapinskas Symbol tables 7 / 7

