
Compiler concepts: Parsing
COMSM1302 Overview of Computer Architecture

John Lapinskas, University of Bristol

John Lapinskas Parsing 1 / 12



Describing languages

We have a description of Hack syntax in Nisan and Schocken, right?

Maybe this isn’t the most convenient form possible...

John Lapinskas Parsing 2 / 12



Describing languages

We have a description of Hack syntax in Nisan and Schocken, right?

Maybe this isn’t the most convenient form possible...
John Lapinskas Parsing 2 / 12



A more sophisticated approach

We’ll need a highly sophisticated mathematical construction:

Madlibs.

Source: Jesse Vig via Medium (here)

John Lapinskas Parsing 3 / 12

https://towardsdatascience.com/a-i-plays-mad-libs-and-the-results-are-terrifying-78fa44e7f04e


A more sophisticated approach: Madlibs!

We’ll need a highly sophisticated mathematical construction: Madlibs.

Source: Jesse Vig via Medium (here)

John Lapinskas Parsing 3 / 12

https://towardsdatascience.com/a-i-plays-mad-libs-and-the-results-are-terrifying-78fa44e7f04e


A more sophisticated approach: Madlibs?

We’ll need a highly sophisticated mathematical construction: Madlibs.

Source: Jesse Vig via Medium (here)

A context-free grammar (or just grammar) is a way of quickly and
rigorously specifying which strings in a language have valid syntax.

There is a deep and rich mathematical theory here, which we thankfully
don’t need to learn! Programmers express grammars in Backus-Naur
Form (BNF), and usually just understanding BNF is enough.

BNF is basically Madlibs, but recursive.

John Lapinskas Parsing 4 / 12

https://towardsdatascience.com/a-i-plays-mad-libs-and-the-results-are-terrifying-78fa44e7f04e


Introduction to Madlibs Backus-Naur Form (BNF)

Here’s a simple example:

⟨noun⟩ ::= ‘lecturer’ | ‘student’ | ‘pizza’
⟨presentVerb⟩ ::= ‘eats’ | ‘devours’ | ‘consumes’

You can read each | as “or” and each ::= as “is defined as”. E.g. a ⟨noun⟩
is defined as one of the three strings ‘lecturer’, ‘student’, or ‘pizza’.

We can also build up definitions in terms of other definitions, e.g.

⟨sentence⟩ ::= ‘The’ ⟨noun⟩ ⟨presentVerb⟩ ‘the’ ⟨noun⟩

Here, valid ⟨sentence⟩s include:

Anything we define as part of the grammar must be enclosed in ⟨⟩s. We
call these non-terminal symbols. Anything else (e.g. ‘lecturer’) is a
terminal symbol or token.

John Lapinskas Parsing 5 / 12



Introduction to Madlibs Backus-Naur Form (BNF)

Here’s a simple example:

⟨noun⟩ ::= ‘lecturer’ | ‘student’ | ‘pizza’
⟨presentVerb⟩ ::= ‘eats’ | ‘devours’ | ‘consumes’

You can read each | as “or” and each ::= as “is defined as”. E.g. a ⟨noun⟩
is defined as one of the three strings ‘lecturer’, ‘student’, or ‘pizza’.

We can also build up definitions in terms of other definitions, e.g.

⟨sentence⟩ ::= ‘The’ ⟨noun⟩ ⟨presentVerb⟩ ‘the’ ⟨noun⟩

Here, valid ⟨sentence⟩s include:

Anything we define as part of the grammar must be enclosed in ⟨⟩s. We
call these non-terminal symbols. Anything else (e.g. ‘lecturer’) is a
terminal symbol or token.

John Lapinskas Parsing 5 / 12



Introduction to Madlibs Backus-Naur Form (BNF)

Here’s a simple example:

⟨noun⟩ ::= ‘lecturer’ | ‘student’ | ‘pizza’
⟨presentVerb⟩ ::= ‘eats’ | ‘devours’ | ‘consumes’

You can read each | as “or” and each ::= as “is defined as”. E.g. a ⟨noun⟩
is defined as one of the three strings ‘lecturer’, ‘student’, or ‘pizza’.

We can also build up definitions in terms of other definitions, e.g.

⟨sentence⟩ ::= ‘The’ ⟨noun⟩ ⟨presentVerb⟩ ‘the’ ⟨noun⟩

Here, valid ⟨sentence⟩s include:

‘The’ ⟨noun⟩ ⟨presentVerb⟩ ‘the’ ⟨noun⟩

Anything we define as part of the grammar must be enclosed in ⟨⟩s. We
call these non-terminal symbols. Anything else (e.g. ‘lecturer’) is a
terminal symbol or token.

John Lapinskas Parsing 5 / 12



Introduction to Madlibs Backus-Naur Form (BNF)

Here’s a simple example:

⟨noun⟩ ::= ‘lecturer’ | ‘student’ | ‘pizza’
⟨presentVerb⟩ ::= ‘eats’ | ‘devours’ | ‘consumes’

You can read each | as “or” and each ::= as “is defined as”. E.g. a ⟨noun⟩
is defined as one of the three strings ‘lecturer’, ‘student’, or ‘pizza’.

We can also build up definitions in terms of other definitions, e.g.

⟨sentence⟩ ::= ‘The’ ⟨noun⟩ ⟨presentVerb⟩ ‘the’ ⟨noun⟩

Here, valid ⟨sentence⟩s include:

‘The’ ‘lecturer’ ‘consumes’ ‘the’ ‘pizza’

Anything we define as part of the grammar must be enclosed in ⟨⟩s. We
call these non-terminal symbols. Anything else (e.g. ‘lecturer’) is a
terminal symbol or token.

John Lapinskas Parsing 5 / 12



Introduction to Madlibs Backus-Naur Form (BNF)

Here’s a simple example:

⟨noun⟩ ::= ‘lecturer’ | ‘student’ | ‘pizza’
⟨presentVerb⟩ ::= ‘eats’ | ‘devours’ | ‘consumes’

You can read each | as “or” and each ::= as “is defined as”. E.g. a ⟨noun⟩
is defined as one of the three strings ‘lecturer’, ‘student’, or ‘pizza’.

We can also build up definitions in terms of other definitions, e.g.

⟨sentence⟩ ::= ‘The’ ⟨noun⟩ ⟨presentVerb⟩ ‘the’ ⟨noun⟩

Here, valid ⟨sentence⟩s include:

‘The’ ‘student’ ‘eats’ ‘the’ ‘pizza’

Anything we define as part of the grammar must be enclosed in ⟨⟩s. We
call these non-terminal symbols. Anything else (e.g. ‘lecturer’) is a
terminal symbol or token.

John Lapinskas Parsing 5 / 12



Introduction to Madlibs Backus-Naur Form (BNF)

Here’s a simple example:

⟨noun⟩ ::= ‘lecturer’ | ‘student’ | ‘pizza’
⟨presentVerb⟩ ::= ‘eats’ | ‘devours’ | ‘consumes’

You can read each | as “or” and each ::= as “is defined as”. E.g. a ⟨noun⟩
is defined as one of the three strings ‘lecturer’, ‘student’, or ‘pizza’.

We can also build up definitions in terms of other definitions, e.g.

⟨sentence⟩ ::= ‘The’ ⟨noun⟩ ⟨presentVerb⟩ ‘the’ ⟨noun⟩

Here, valid ⟨sentence⟩s include:

‘The’ ‘lecturer’ ‘devours’ ‘the’ ‘student’

Anything we define as part of the grammar must be enclosed in ⟨⟩s. We
call these non-terminal symbols. Anything else (e.g. ‘lecturer’) is a
terminal symbol or token.

John Lapinskas Parsing 5 / 12



Introduction to Madlibs Backus-Naur Form (BNF)

Here’s a simple example:

⟨noun⟩ ::= ‘lecturer’ | ‘student’ | ‘pizza’
⟨presentVerb⟩ ::= ‘eats’ | ‘devours’ | ‘consumes’

You can read each | as “or” and each ::= as “is defined as”. E.g. a ⟨noun⟩
is defined as one of the three strings ‘lecturer’, ‘student’, or ‘pizza’.

We can also build up definitions in terms of other definitions, e.g.

⟨sentence⟩ ::= ‘The’ ⟨noun⟩ ⟨presentVerb⟩ ‘the’ ⟨noun⟩

Here, valid ⟨sentence⟩s include:

‘The’ ‘lecturer’ ‘devours’ ‘the’ ‘student’

Anything we define as part of the grammar must be enclosed in ⟨⟩s. We
call these non-terminal symbols. Anything else (e.g. ‘lecturer’) is a
terminal symbol or token.

John Lapinskas Parsing 5 / 12



Example: Integers

The last feature of BNF is the source of its power: it allows recursion.

For example, suppose our tokens are ‘0’ through ‘9’, and we want to define
a non-terminal symbol that matches precisely the non-negative whole
numbers (allowing for leading zeroes). We could write:

⟨digit⟩ ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’
⟨number⟩ ::= ⟨digit⟩ | ⟨digit⟩ ⟨number⟩

E.g. ‘016’ is a ⟨number⟩ because we can expand ⟨number⟩’s definition as:

⟨number⟩ −→ ⟨digit⟩ ⟨number⟩ −→ ⟨digit⟩ ⟨digit⟩ ⟨number⟩
−→ ⟨digit⟩ ⟨digit⟩ ⟨digit⟩ −→ ‘0’ ‘1’ ‘6’.

That’s it! That’s all of BNF. It can be hard to use and hard to reason
about, but the syntax is simple.

John Lapinskas Parsing 6 / 12



Example: Integers

The last feature of BNF is the source of its power: it allows recursion.

For example, suppose our tokens are ‘0’ through ‘9’, and we want to define
a non-terminal symbol that matches precisely the non-negative whole
numbers (allowing for leading zeroes). We could write:

⟨digit⟩ ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’
⟨number⟩ ::= ⟨digit⟩ | ⟨digit⟩ ⟨number⟩

E.g. ‘016’ is a ⟨number⟩ because we can expand ⟨number⟩’s definition as:

⟨number⟩ −→ ⟨digit⟩ ⟨number⟩ −→ ⟨digit⟩ ⟨digit⟩ ⟨number⟩
−→ ⟨digit⟩ ⟨digit⟩ ⟨digit⟩ −→ ‘0’ ‘1’ ‘6’.

That’s it! That’s all of BNF. It can be hard to use and hard to reason
about, but the syntax is simple.

John Lapinskas Parsing 6 / 12



Example: Integers

The last feature of BNF is the source of its power: it allows recursion.

For example, suppose our tokens are ‘0’ through ‘9’, and we want to define
a non-terminal symbol that matches precisely the non-negative whole
numbers (allowing for leading zeroes). We could write:

⟨digit⟩ ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’
⟨number⟩ ::= ⟨digit⟩ | ⟨digit⟩ ⟨number⟩

E.g. ‘016’ is a ⟨number⟩ because we can expand ⟨number⟩’s definition as:

⟨number⟩ −→ ⟨digit⟩ ⟨number⟩ −→ ⟨digit⟩ ⟨digit⟩ ⟨number⟩
−→ ⟨digit⟩ ⟨digit⟩ ⟨digit⟩ −→ ‘0’ ‘1’ ‘6’.

That’s it! That’s all of BNF. It can be hard to use and hard to reason
about, but the syntax is simple.

John Lapinskas Parsing 6 / 12



Example: Better integers

How should we redefine ⟨number⟩ to allow negative numbers, but forbid
leading zeroes? (Assume we have ‘0’ through ‘9’ and ‘−’ as tokens.)

Some sanity checks for any such re-definition:

‘−’ ‘1’ ‘0’ should be a ⟨number⟩.
‘0’ should be a ⟨number⟩.
‘0’ ‘1’ shouldn’t be a ⟨number⟩.
‘−’ ‘0’ shouldn’t be a ⟨number⟩.

There are multiple approaches — there’s no such thing as the “right”
expression of a grammar in BNF. Here’s one way:

⟨posDigit⟩ ::= ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’
⟨posNumber⟩ ::= ⟨posDigit⟩ | ⟨posNumber⟩ ⟨posDigit⟩ | ⟨posNumber⟩ ‘0’

⟨number⟩ ::= ⟨posNumber⟩ | ‘0’ | ‘−’ ⟨posNumber⟩

John Lapinskas Parsing 7 / 12



Example: Better integers

How should we redefine ⟨number⟩ to allow negative numbers, but forbid
leading zeroes? (Assume we have ‘0’ through ‘9’ and ‘−’ as tokens.)

Some sanity checks for any such re-definition:

‘−’ ‘1’ ‘0’ should be a ⟨number⟩.
‘0’ should be a ⟨number⟩.
‘0’ ‘1’ shouldn’t be a ⟨number⟩.
‘−’ ‘0’ shouldn’t be a ⟨number⟩.

There are multiple approaches — there’s no such thing as the “right”
expression of a grammar in BNF. Here’s one way:

⟨posDigit⟩ ::= ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’
⟨posNumber⟩ ::= ⟨posDigit⟩ | ⟨posNumber⟩ ⟨posDigit⟩ | ⟨posNumber⟩ ‘0’

⟨number⟩ ::= ⟨posNumber⟩ | ‘0’ | ‘−’ ⟨posNumber⟩

John Lapinskas Parsing 7 / 12



Example: Better integers

How should we redefine ⟨number⟩ to allow negative numbers, but forbid
leading zeroes? (Assume we have ‘0’ through ‘9’ and ‘−’ as tokens.)

Some sanity checks for any such re-definition:

‘−’ ‘1’ ‘0’ should be a ⟨number⟩.
‘0’ should be a ⟨number⟩.
‘0’ ‘1’ shouldn’t be a ⟨number⟩.
‘−’ ‘0’ shouldn’t be a ⟨number⟩.

There are multiple approaches — there’s no such thing as the “right”
expression of a grammar in BNF. Here’s one way:

⟨posDigit⟩ ::= ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’
⟨posNumber⟩ ::= ⟨posDigit⟩ | ⟨posNumber⟩ ⟨posDigit⟩ | ⟨posNumber⟩ ‘0’

⟨number⟩ ::= ⟨posNumber⟩ | ‘0’ | ‘−’ ⟨posNumber⟩

John Lapinskas Parsing 7 / 12



Parse trees

⟨posDigit⟩ ::= ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’
⟨posNumber⟩ ::= ⟨posDigit⟩ | ⟨posNumber⟩ ⟨posDigit⟩ | ⟨posNumber⟩ ‘0’

⟨number⟩ ::= ⟨posNumber⟩ | ‘0’ | ‘−’ ⟨posNumber⟩

The goal of parsing is to convert a list of tokens into a parse tree or concrete
syntax tree (CST) which gives its BNF structure. E.g. for “−886”:

‘8’

⟨posDigit⟩ ‘8’

⟨posNumber⟩ ⟨posDigit⟩ ‘6’

⟨posNumber⟩ ⟨posDigit⟩

⟨posNumber⟩‘−’

⟨number⟩

Each non-terminal symbol is a node. Its children are its BNF expansion, in order
from left to right — so the leaves are precisely the tokens.

John Lapinskas Parsing 8 / 12



Abstract syntax trees

⟨posDigit⟩ ::= ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’
⟨posNumber⟩ ::= ⟨posDigit⟩ | ⟨posNumber⟩ ⟨posDigit⟩ | ⟨posNumber⟩ ‘0’

⟨number⟩ ::= ⟨posNumber⟩ | ‘0’ | ‘−’ ⟨posNumber⟩

For efficiency and convenience, we may choose to process a CST into an abstract
syntax tree (AST), which contains the same information in a more convenient
form. E.g. we might decide we don’t need the ⟨posDigit⟩ nodes:

last digit: ‘8’
⟨posNumber⟩

last digit: ‘8’
⟨posNumber⟩

last digit: ‘6’
⟨posNumber⟩

sign: ‘−’
⟨number⟩

John Lapinskas Parsing 9 / 12



Ambiguity

Consider this grammar for simple arithmetic expressions.

⟨expression⟩ ::= ⟨number⟩ | ⟨expression⟩ ⟨operator⟩ ⟨expression⟩ |
‘(’ ⟨expression⟩ ⟨operator⟩ ⟨expression⟩ ‘)’

⟨operator⟩ ::= ‘+’ | ‘−’ | ‘∗’ | ‘/’ | ‘ˆ’

Then a parser could output several valid CSTs for e.g. (3 + 4) ∗ (5− 1)/3.

This ambiguity can be dealt with as long as the semantic meaning is not
ambiguous. E.g. here it is the same for all CSTs.

John Lapinskas Parsing 10 / 12



Ambiguity

Consider this grammar for simple arithmetic expressions.

⟨expression⟩ ::= ⟨number⟩ | ⟨expression⟩ ⟨operator⟩ ⟨expression⟩ |
‘(’ ⟨expression⟩ ⟨operator⟩ ⟨expression⟩ ‘)’

⟨operator⟩ ::= ‘+’ | ‘−’ | ‘∗’ | ‘/’ | ‘ˆ’

Then a parser could output several valid CSTs for e.g. (3 + 4) ∗ (5− 1)/3.

This ambiguity can be dealt with as long as the semantic meaning is not
ambiguous. E.g. here it is the same for all CSTs.

John Lapinskas Parsing 10 / 12



Generating parse trees

Parsing is a difficult and subtle problem, but a well-understood one.

Source: Generated with imgflip (here).

This means we shouldn’t try to solve it again ourselves! We should instead
use a parser generator which takes our grammar in BNF form and
outputs code for a parser in a language of our choice. (E.g. yacc for C.)

John Lapinskas Parsing 11 / 12

https://imgflip.com/memegenerator/234051219/nooo-haha-go-brrr


Generating parse trees

Parsing is a difficult and subtle problem, but a well-understood one.

Source: Generated with imgflip (here).

This means we shouldn’t try to solve it again ourselves! We should instead
use a parser generator which takes our grammar in BNF form and
outputs code for a parser in a language of our choice. (E.g. yacc for C.)

John Lapinskas Parsing 11 / 12

https://imgflip.com/memegenerator/234051219/nooo-haha-go-brrr


Extended Backus-Naur Form (EBNF)

Often both parser generators and language specifications add extra syntax to BNF
for usability, but there’s no one standard. Based loosely on ISO 14977, we’ll add:

()s mean grouped terms, e.g. (‘0’ | ‘1’) (‘0’ | ‘1’) means 00, 01, 10 or 11.

[]s mean optional terms, e.g. [‘0’] ‘1’ means 01 or 1.

{}s mean repetition, e.g. {‘0’ | ‘1’} means any number of zeroes and ones
(including the empty string).

A− B means anything that matches A, but doesn’t match B, e.g.
⟨number⟩ − ⟨posNumber⟩ means any number that’s not a ⟨posNumber⟩.

This doesn’t let BNF express any grammars it couldn’t before (why not?), but it
does make it much nicer to read and write. For example:

⟨digit⟩ ::= ‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’
⟨number⟩ ::= ([‘−’] (⟨digit⟩ − ‘0’) {⟨digit⟩}) | ‘0’

With EBNF, we can build a readable grammar for all of C, never mind Hack! See
for example here (credit Samuya Debray).

John Lapinskas Parsing 12 / 12

http://www2.cs.arizona.edu/~debray/Teaching/CSc453/DOCS/cminusminusspec.html

