Compiler concepts: Parsing

COMSM1302 Overview of Computer Architecture

John Lapinskas, University of Bristol

John Lapinskas Parsing 1/12

Describing languages

We have a description of Hack syntax in Nisan and Schocken, right?

John Lapinskas Parsing 2/12

Describing languages

We have a description of Hack syntax in Nisan and Schocken, right?

Maybe this isn't the most convenient form possible...

John Lapinskas Parsing 2/12

A more sophisticated approach

We'll need a highly sophisticated mathematical construction:

John Lapinskas Parsing 3/12

https://towardsdatascience.com/a-i-plays-mad-libs-and-the-results-are-terrifying-78fa44e7f04e

A more sophisticated approach: Madlibs!

We'll need a highly sophisticated mathematical construction: Madlibs.

THE MAGIC COMPUTERS

Today, every student has a p small gh to fit into his
L. He can solve any math problem by simply
NOUN

pushing the puter’s little bu‘H‘On . Computers
PLURAL NOUN

can add, multiply, divide, and kl” . They
VERB (PRESENT TENSE)

can also be better than a human. Some com-

VERB (PRESENT TENSE)
puters are blOCk . Others have a/an

PART OF BODY (PLURAL)

_Oﬁﬂ__ screen that shows all kinds of CIO‘H'IGS
ADIJECTIVE PLURAL NOUN

and €ven figures.
ADJECTIVE

Source: Jesse Vig via Medium (here)

John Lapinskas Parsing 3/12

https://towardsdatascience.com/a-i-plays-mad-libs-and-the-results-are-terrifying-78fa44e7f04e

A more sophisticated approach: Madlibs?

We'll need a highly sophisticated mathematical construction

A context-free grammar (or just grammar) is a way of quickly and
rigorously specifying which strings in a language have valid syntax.

There is a deep and rich mathematical theory here, which we thankfully
don’t need to learn! Programmers express grammars in Backus-Naur
Form (BNF), and usually just understanding BNF is enough.

THE MAGIC COMPUTERS

Today, every student has a computer small enough to fit into his

bed

He can solve any math problem by simply

pushing the computer’s little

can add, multiply, divide, and

u
OPen sreenthatshows i inasor__lothes

and even figures.

Source: Jesse Vig via Medium (here)

BNF is basically Madlibs, but recursive.

John Lapinskas

Parsing

4/12

https://towardsdatascience.com/a-i-plays-mad-libs-and-the-results-are-terrifying-78fa44e7f04e

Introduction to Madlibs Backus-Naur Form (BNF)

Here's a simple example:

(noun) ::= ‘lecturer’ | ‘student’ | ‘pizza’
(presentVerb) ::= ‘eats’ | ‘devours’ | ‘consumes’
You can read each | as “or” and each ::= as “is defined as”. E.g. a (noun)

is defined as one of the three strings ‘lecturer’, ‘student’, or ‘pizza’.

John Lapinskas Parsing 5/12

Introduction to Madlibs Backus-Naur Form (BNF)

Here's a simple example:

(noun) ::= ‘lecturer’ | ‘student’ | ‘pizza’
(presentVerb) ::= ‘eats’ | ‘devours’ | ‘consumes’
You can read each | as “or” and each ::= as “is defined as”. E.g. a (noun)

is defined as one of the three strings ‘lecturer’, ‘student’, or ‘pizza’.

We can also build up definitions in terms of other definitions, e.g.
(sentence) ::= ‘The' (noun) (presentVerb) ‘the’ (noun)

Here, valid (sentence)s include:

John Lapinskas Parsing 5/12

Introduction to Madlibs Backus-Naur Form (BNF)

Here's a simple example:

(noun) ::= ‘lecturer’ | ‘student’ | ‘pizza’
(presentVerb) ::= ‘eats’ | ‘devours’ | ‘consumes’
You can read each | as “or” and each ::= as “is defined as”. E.g. a (noun)

is defined as one of the three strings ‘lecturer’, ‘student’, or ‘pizza’.

We can also build up definitions in terms of other definitions, e.g.
(sentence) ::= ‘The' (noun) (presentVerb) ‘the’ (noun)
Here, valid (sentence)s include:

‘The’ (noun) (presentVerb) ‘the’ (noun)

John Lapinskas Parsing 5/12

Introduction to Madlibs Backus-Naur Form (BNF)

Here's a simple example:

(noun) ::= ‘lecturer’ | ‘student’ | ‘pizza’
(presentVerb) ::= ‘eats’ | ‘devours’ | ‘consumes’
You can read each | as “or” and each ::= as “is defined as”. E.g. a (noun)

is defined as one of the three strings ‘lecturer’, ‘student’, or ‘pizza’.

We can also build up definitions in terms of other definitions, e.g.
(sentence) ::= ‘The' (noun) (presentVerb) ‘the’ (noun)
Here, valid (sentence)s include:

‘The’ ‘lecturer’ ‘consumes’ ‘the’ ‘pizza’

John Lapinskas Parsing 5/12

Introduction to Madlibs Backus-Naur Form (BNF)

Here's a simple example:

(noun) ::= ‘lecturer’ | ‘student’ | ‘pizza’
(presentVerb) ::= ‘eats’ | ‘devours’ | ‘consumes’
You can read each | as “or” and each ::= as “is defined as”. E.g. a (noun)

is defined as one of the three strings ‘lecturer’, ‘student’, or ‘pizza’.

We can also build up definitions in terms of other definitions, e.g.
(sentence) ::= ‘The' (noun) (presentVerb) ‘the’ (noun)
Here, valid (sentence)s include:

‘The' ‘student’ ‘eats’ ‘the’ ‘pizza’

John Lapinskas Parsing 5/12

Introduction to Madlibs Backus-Naur Form (BNF)

Here's a simple example:

(noun) ::= ‘lecturer’ | ‘student’ | ‘pizza’
(presentVerb) ::= ‘eats’ | ‘devours’ | ‘consumes’
You can read each | as “or” and each ::= as “is defined as”. E.g. a (noun)

is defined as one of the three strings ‘lecturer’, ‘student’, or ‘pizza’.

We can also build up definitions in terms of other definitions, e.g.
(sentence) ::= ‘The' (noun) (presentVerb) ‘the’ (noun)
Here, valid (sentence)s include:

‘The’ ‘lecturer’ ‘devours’ ‘the’ ‘student’

John Lapinskas Parsing 5/12

Introduction to Madlibs Backus-Naur Form (BNF)

Here's a simple example:

(noun) ::= ‘lecturer’ | ‘student’ | ‘pizza’
(presentVerb) ::= ‘eats’ | ‘devours’ | ‘consumes’
You can read each | as “or” and each ::= as “is defined as”. E.g. a (noun)

is defined as one of the three strings ‘lecturer’, ‘student’, or ‘pizza’.

We can also build up definitions in terms of other definitions, e.g.
(sentence) ::= ‘The' (noun) (presentVerb) ‘the’ (noun)
Here, valid (sentence)s include:

‘The’ ‘lecturer’ ‘devours’ ‘the’ ‘student’

Anything we define as part of the grammar must be enclosed in ()s. We
call these non-terminal symbols. Anything else (e.g. ‘lecturer’) is a
terminal symbol or token.

John Lapinskas Parsing 5/12

Example: Integers

The last feature of BNF is the source of its power: it allows recursion.

For example, suppose our tokens are ‘0’ through ‘9', and we want to define
a non-terminal symbol that matches precisely the non-negative whole
numbers (allowing for leading zeroes). We could write:

John Lapinskas Parsing 6/12

Example: Integers

The last feature of BNF is the source of its power: it allows recursion.

For example, suppose our tokens are ‘0’ through ‘9', and we want to define
a non-terminal symbol that matches precisely the non-negative whole
numbers (allowing for leading zeroes). We could write:

(digit) n="0"| 1" |2 |'3" |4 |'5'|'6"|'7T"|'8|'D
(number) := (digit) | (digit) (number)
E.g. ‘016" is a (number) because we can expand (number)'s definition as:

(number) — (digit) (number) — (digit) (digit) (number)
— (digit) (digit) (digit) —s ‘0" ‘1" '6".

John Lapinskas Parsing 6/12

Example: Integers

The last feature of BNF is the source of its power: it allows recursion.

For example, suppose our tokens are ‘0’ through ‘9', and we want to define
a non-terminal symbol that matches precisely the non-negative whole
numbers (allowing for leading zeroes). We could write:

(digit) n="0"| 1" |2 |'3" |4 |'5'|'6"|'7T"|'8|'D
(number) := (digit) | (digit) (number)
E.g. ‘016" is a (number) because we can expand (number)'s definition as:
(number) — (digit) (number) — (digit) (digit) (number)
— (digit) (digit) (digit) — ‘0" 1" ‘6.

That's it! That's all of BNF. It can be hard to use and hard to reason
about, but the syntax is simple.

John Lapinskas Parsing 6/12

Example: Better integers

How should we redefine (number) to allow negative numbers, but forbid
leading zeroes? (Assume we have ‘0" through ‘9" and ‘—' as tokens.)

John Lapinskas Parsing 7/12

Example: Better integers

How should we redefine (number) to allow negative numbers, but forbid
leading zeroes? (Assume we have ‘0" through ‘9" and ‘—' as tokens.)

Some sanity checks for any such re-definition:
@ ‘—''1" ‘0’ should be a (number).
@ ‘0’ should be a (number).
@ ‘0" ‘1" shouldn’t be a (number).

@ '—' ‘0’ shouldn't be a (number).

John Lapinskas Parsing 7/12

Example: Better integers

How should we redefine (number) to allow negative numbers, but forbid
leading zeroes? (Assume we have ‘0" through ‘9" and ‘—' as tokens.)

Some sanity checks for any such re-definition:
@ ‘—''1" ‘0’ should be a (number).
@ ‘0’ should be a (number).
@ ‘0" ‘1" shouldn’t be a (number).
@ '—' ‘0’ shouldn't be a (number).

There are multiple approaches — there's no such thing as the “right”
expression of a grammar in BNF. Here's one way:

(posDigit) ::= ‘1" | '2'| '3 | ‘4’ | '5' | '6'| ‘7" | '8' | 'O’
(posNumber) ::= (posDigit) | (posNumber) (posDigit) | (posNumber) ‘0’
(number) ::= (posNumber) | ‘0" | ‘=" (posNumber)

John Lapinskas Parsing 7/12

Parse trees

(posDigit) ::= 1" 2" | 3" | ‘4" |'5'|'6" | ‘7" | 8" |9’
(posNumber) ::= (posDigit) | (posNumber) (posDigit) | (posNumber) ‘0’

(number) ::= (posNumber) | ‘0" | ‘=" (posNumber)

The goal of parsing is to convert a list of tokens into a parse tree or concrete
syntax tree (CST) which gives its BNF structure. E.g. for “—886":

(number)
[-] (posNumber)
l
[(posNumber)| [(posDigit)]
B
[(posNumber)| [{posDigit)] 6]
(posDigit) [8]

Each non-terminal symbol is a node. Its children are its BNF expansion, in order
from left to right — so the leaves are precisely the tokens.
John Lapinskas Parsing 8/12

Abstract syntax trees

(posDigit) ::="'1"| 2" | 3" | 4" |'5"|'6'|'7T"|'8" | 'O
(posNumber) ::= (posDigit) | (posNumber) (posDigit) | (posNumber) ‘0’

(number) ::= (posNumber) | ‘0" | ‘=" (posNumber)

For efficiency and convenience, we may choose to process a CST into an abstract
syntax tree (AST), which contains the same information in a more convenient
form. E.g. we might decide we don't need the (posDigit) nodes:

(number)
sign: ‘—'
(posNumber)
last_digit: ‘6’
(posNumber)
last_digit: ‘8’
l
(posNumber)
last_digit: ‘8’

John Lapinskas Parsing 9/12

Ambiguity

Consider this grammar for simple arithmetic expressions.

(expression) ::= (number) | (expression) (operator) (expression) |
‘(" (expression) (operator) (expression) ‘)’
<Operat0r> = 1+1 | [’ 1*1 | 1/1 ‘ e~

John Lapinskas Parsing 10/12

Ambiguity

Consider this grammar for simple arithmetic expressions.

(expression) ::= (number) | (expression) (operator) (expression) |
‘(" (expression) (operator) (expression) ‘)’
<Operator> ::: l+1 | ‘_Y ’ I*Y | l/’ ‘ [Ean)
Then a parser could output several valid CSTs for e.g. (3+4)*(5—1)/3.

This ambiguity can be dealt with as long as the semantic meaning is not
ambiguous. E.g. here it is the same for all CSTs.

John Lapinskas Parsing 10/12

Generating parse trees

Parsing is a difficult and subtle problem, but a well-understood one.

John Lapinskas Parsing 11/12

https://imgflip.com/memegenerator/234051219/nooo-haha-go-brrr

Generating parse trees

Parsing is a difficult and subtle problem, but a well-understood one.

NOOOOOOOO00000MN ¥ OUl

CANT HAVE THE COMPUTER WIRITE ¥ OUR
PARSER FOR Y OUSE WHAT ABOUT haha yace
NON-CONTEXT-FREE GRAMMARS AND go brrrrrrrr
RECURSIVE DESCENT AND ALL THE BEAUTIFLL
SUBTLETY OF TY PE THEONO NOOO00G0000000

Source: Generated with imgflip (here)

This means we shouldn’t try to solve it again ourselves! We should instead
use a parser generator which takes our grammar in BNF form and
outputs code for a parser in a language of our choice. (E.g. yacc for C.)

John Lapinskas Parsing 11/12

https://imgflip.com/memegenerator/234051219/nooo-haha-go-brrr

Extended Backus-Naur Form (EBNF)

Often both parser generators and language specifications add extra syntax to BNF
for usability, but there's no one standard. Based loosely on ISO 14977, we’ll add:

@ ()s mean grouped terms, e.g. (‘0" | '1") (‘0" | ‘1') means 00, 01, 10 or 11.
@ [|s mean optional terms, e.g. ['0'] ‘1" means 01 or 1.

@ {}s mean repetition, e.g. {'0" | ‘1'} means any number of zeroes and ones
(including the empty string).

@ A — B means anything that matches A, but doesn’'t match B, e.g.
(number) — (posNumber) means any number that's not a (posNumber).

This doesn’t let BNF express any grammars it couldn’t before (why not?), but it
does make it much nicer to read and write. For example:

(digit) =:="0"]'1"| 2" |'3"|'4|'5'|'6"|'T |8
(number) ::= (['="] ({digit) —‘0") {(digit)}) | ‘0’

With EBNF, we can build a readable grammar for all of C, never mind Hack! See
for example here (credit Samuya Debray).

‘g

John Lapinskas Parsing 12/12

http://www2.cs.arizona.edu/~debray/Teaching/CSc453/DOCS/cminusminusspec.html

