
COMSM1302 Overview of Computer Architecture University of Bristol

Figure 1: Interface for a symbol table in C (symboltable.h).

Week 8 assignment: A Hack assembler

1 Tasks
1. Consider how to implement a symbol table in C.

2. Write a Hack lexer in C and test it on the scripts provided.

3. Extend your lexer into a full assembler and test that on the scripts provided.

2 Required software
For this lab, you will need some way of comparing two text files for differences. One way is to use the “fc” terminal
command on Windows or the “diff” terminal command on Linux and Mac OS. On non-lab non-Mac machines, you
can also use e.g. Meld, a piece of free open-source software with a nice graphical user interface. You will also need a
C compiler of your choice — we hope you have one set up already after 6 weeks of Programming in C!

3 Symbol tables
In lectures this week, we covered the idea of a symbol table. In Figure 1, you can see one possible header file for a
symbol table along with documentation in comments. Spend a few minutes considering how you would implement
the accompanying source file yourself.

While implementing a symbol table is definitely within your abilities, and it’s an interesting exercise in program-
ming C, it’s not a good use of time in an architecture assignment. Most languages offer built-in types with this

1

https://meldmerge.org/


COMSM1302 Overview of Computer Architecture University of Bristol

Figure 2: The TokenData type with usage examples.

functionality — in Java (which you’ll learn next teaching block) they’re called HashMaps, and in other languages
they might be called “hash tables” or “dictionaries”. Since the point of the assignment is to write an assembler, we’ve
provided a symbol table for you in symboltable.h and symboltable.c (downloadable from the unit page).
Spend a few minutes reading through the source code and making sure you understand it. You’ll also be using
this code for the rest of the unit.

4 Tokens
Another bad use of your time in an architecture assignment is grappling with C’s string handling and file I/O, which
are again more cumbersome than most other languages. To some extent this is unavoidable, but we’ve tried to mitigate
it by providing code for a Token struct in token.h and token.c matching the list given in lectures. Each token
contains a type (an enum which can be SYMBOL, KEYWORD, INTEGER LITERAL, IDENTIFIER or NEWLINE)
and a value. The value can be a char (for symbols), an enum (for keywords), an int (for integer literals), a string
(for identifiers), or nothing (for newlines). It’s stored in a “union” type, a special sort of variable which can store one
of several types in the same memory location — see Figure 2.

Token.c provides functions to create new tokens, free old tokens, write tokens to a file (in somewhat human-
readable format) and read tokens back from that file. Spend a few minutes reading through the code and making
sure you understand it, starting with token.h. You’ll also be using simple variants of this code for the rest of the
unit.

5 Lexing
A good first stage in writing any compiler or assembler is to implement a lexer which reads in code, outputs the
corresponding list of tokens to an intermediate temporary file using the write token function, and (in this case)
creates a symbol table of labels. You don’t need to worry about error handling — while this would be important for
any assembler intended to be used, it’s not the focus of the unit and there’s plenty to do already!

Your first step should be to read and understand the given lex file function, then fill in the remaining code
for the lex line function. Given a string line and a pointer to its corresponding ROM address rom address,
the lex line function should write all tokens in the line to the given file output and store any labels in the given
symbol table labels. We’ve given you most of the code for this — it will scan through line, calling lex token

2



COMSM1302 Overview of Computer Architecture University of Bristol

if the next thing on the line is a token and lex label if the next thing on the line is a label. Add code to handle
whitespace and comments and to keep the ROM address updated. (Recall that lines which only contain labels,
comments and/or whitespace don’t correspond to lines of machine code, while other lines correspond to exactly one
line of machine code.)

Your next step should be the lex token function. Given a string line, this function should identify the first
token in the line, write it to the provided Token pointer dest, and return the length of the token (e.g. 1 for “@”).
You don’t need to deal with labels or whitespace or comments, since they’re handled by lex line and lex label.
We’ve also provided code to handle newlines, symbols, and integer literals. Add code to handle keywords and
identifiers. Before proceeding further, you should test your implementation. Here are some good test cases, all of
which are valid Hack assembly:

• @431

• @THAT (THAT should be lexed as a keyword)

• @R13 (R13 should be lexed as a keyword)

• @BANANA

• @APPLE (should not lex A as a keyword)

• @AD (should not lex A and D as keywords)

• 0

• 0;JMP

• D=0;JLT

• D=0

• AD=D-M;JNE

Finally, you should fill in the lex label function. This code should add the label to the given symbol table
with the appropriate ROM address and return.

Now test your lexer on the four test scripts from the corresponding Nand2Tetris project, which we have provided
on the unit page. We’ve provided the lexing outputs for each test script, so you can check your output against the
correct output using either fc/diff or Meld. We recommend testing add.asm first, then max.asm, then rect.asm, then
pong.asm (which is over 25k lines and is autogenerated from a higher-level language). To help with debugging,
max-L.asm, rect-L.asm and pong-L.asm are alternative versions with no labels or identifiers.

6 Parsing
Once your lexer is up and running, you should try to implement a parser that reads the resulting tokens, populates the
variable symbol table and actually generates the Hack machine code. As with the lexer, we’ve provided skeleton code
for this in main.c, and we recommend you don’t worry about error handling to start with.

The provided parse file function repeatedly reads one instruction’s worth of tokens from the .lex lexer output,
using the get next instruction function together with the fact that instructions always end with a newline
token. For each instruction, it then calls parse instruction with a symbol table of labels (generated during
lexing), a symbol table of variables (currently being generated), the array of Tokens that make up the instruction,
the instruction’s length, and the output file handle. parse instruction then checks to see whether the provided
instruction is an A-instruction or a C-instruction, then calls parse a instruction or parse c instruction
accordingly. Each of those functions will deposit a string into a provided buffer, which parse instruction will
write to the output file.

First you should read and understand parse file, get next instruction and parse instruction,
then fill in the logic in parse instruction for detecting A-instructions.

Next, you should fill in the remaining code in the parse a instruction function. Your objective here
is to load the A instruction’s operand into the integer value to load variable provided — after doing this, the
int to bin string call at the end will copy the appropriate A-instruction into dest.

Next, look at the parse c instruction function provided, which splits the job into parsing the comp, dest
and jump operands, then concatenates the resulting binary strings together into a single machine code instruction.

3



COMSM1302 Overview of Computer Architecture University of Bristol

Fill in the parse c jump and parse c dest functions, as well as the remaining code in the parse c comp
function. (You should refer back to the instruction set from lectures as you do this!) Note that in our test data, we
assume that in C-instructions with computations that don’t involve A or M, the a bit of the comp operand will be set
to 0. We also assume that the second and third bits of the instruction will be set to 1. For example, we assume the
instruction D;JMP will become

1110001100000111, not
1001001100000111,

even though both would be valid Hack machine code.
Lastly, uncomment the code in main.c that calls the parsing functions and test your assembler! We’ve

provided valid .hack files for the same four test scripts as the lexer.

4


	Tasks
	Required software
	Symbol tables
	Tokens
	Lexing
	Parsing

