
The Hack VM I: Structure, arithmetic and logic
COMSM1302 Overview of Computer Architecture

John Lapinskas, University of Bristol

John Lapinskas The Hack VM I 1 / 7



Stacks (reminder)

2

5

5

4

42

42

S = create();

S

S.push(2);

S.push(5);

S.pop();

S.push(4);

S.push(42);

S.pop();

The Hack VM is an example of a stack machine,
in which a stack takes the place of registers for
arithmetic/logical operations and memory is used
only for storage.

From COMSM1201, a stack supports operations:

create(): Creates a new stack.

push(x): Adds x to top of the stack.

pop(): Removes the most recently-added
piece of data from the stack and returns it.

Stacks are LIFO: “Last In, First Out”.

(The JVM is also a stack machine, so there are
good reasons to do this! We’ll see these later.)

John Lapinskas The Hack VM I 2 / 7



Stacks (reminder)

2

5

5

4

42

42

S = create();

S

S.push(2);

S.push(5);

S.pop();

S.push(4);

S.push(42);

S.pop();

The Hack VM is an example of a stack machine,
in which a stack takes the place of registers for
arithmetic/logical operations and memory is used
only for storage.

From COMSM1201, a stack supports operations:

create(): Creates a new stack.

push(x): Adds x to top of the stack.

pop(): Removes the most recently-added
piece of data from the stack and returns it.

Stacks are LIFO: “Last In, First Out”.

(The JVM is also a stack machine, so there are
good reasons to do this! We’ll see these later.)

John Lapinskas The Hack VM I 2 / 7



Stacks (reminder)

2

5

5

4

42

42

S = create();

S

S.push(2);

S.push(5);

S.pop();

S.push(4);

S.push(42);

S.pop();

The Hack VM is an example of a stack machine,
in which a stack takes the place of registers for
arithmetic/logical operations and memory is used
only for storage.

From COMSM1201, a stack supports operations:

create(): Creates a new stack.

push(x): Adds x to top of the stack.

pop(): Removes the most recently-added
piece of data from the stack and returns it.

Stacks are LIFO: “Last In, First Out”.

(The JVM is also a stack machine, so there are
good reasons to do this! We’ll see these later.)

John Lapinskas The Hack VM I 2 / 7



Stacks (reminder)

2

5

5

4

42

42

S = create();

S

S.push(2);

S.push(5);

S.pop();

S.push(4);

S.push(42);

S.pop();

The Hack VM is an example of a stack machine,
in which a stack takes the place of registers for
arithmetic/logical operations and memory is used
only for storage.

From COMSM1201, a stack supports operations:

create(): Creates a new stack.

push(x): Adds x to top of the stack.

pop(): Removes the most recently-added
piece of data from the stack and returns it.

Stacks are LIFO: “Last In, First Out”.

(The JVM is also a stack machine, so there are
good reasons to do this! We’ll see these later.)

John Lapinskas The Hack VM I 2 / 7



Stacks (reminder)

2

5

5

4

42

42

S = create();

S

S.push(2);

S.push(5);

S.pop();

S.push(4);

S.push(42);

S.pop();

The Hack VM is an example of a stack machine,
in which a stack takes the place of registers for
arithmetic/logical operations and memory is used
only for storage.

From COMSM1201, a stack supports operations:

create(): Creates a new stack.

push(x): Adds x to top of the stack.

pop(): Removes the most recently-added
piece of data from the stack and returns it.

Stacks are LIFO: “Last In, First Out”.

(The JVM is also a stack machine, so there are
good reasons to do this! We’ll see these later.)

John Lapinskas The Hack VM I 2 / 7



Stacks (reminder)

2

5

5

4

42

42

S = create();

S

S.push(2);

S.push(5);

S.pop();

S.push(4);

S.push(42);

S.pop();

The Hack VM is an example of a stack machine,
in which a stack takes the place of registers for
arithmetic/logical operations and memory is used
only for storage.

From COMSM1201, a stack supports operations:

create(): Creates a new stack.

push(x): Adds x to top of the stack.

pop(): Removes the most recently-added
piece of data from the stack and returns it.

Stacks are LIFO: “Last In, First Out”.

(The JVM is also a stack machine, so there are
good reasons to do this! We’ll see these later.)

John Lapinskas The Hack VM I 2 / 7



Stacks (reminder)

2

5

5

4

42

42

S = create();

S

S.push(2);

S.push(5);

S.pop();

S.push(4);

S.push(42);

S.pop();

The Hack VM is an example of a stack machine,
in which a stack takes the place of registers for
arithmetic/logical operations and memory is used
only for storage.

From COMSM1201, a stack supports operations:

create(): Creates a new stack.

push(x): Adds x to top of the stack.

pop(): Removes the most recently-added
piece of data from the stack and returns it.

Stacks are LIFO: “Last In, First Out”.

(The JVM is also a stack machine, so there are
good reasons to do this! We’ll see these later.)

John Lapinskas The Hack VM I 2 / 7



Stacks (reminder)

2

5

5

4

42

42

S = create();

S

S.push(2);

S.push(5);

S.pop();

S.push(4);

S.push(42);

S.pop();

The Hack VM is an example of a stack machine,
in which a stack takes the place of registers for
arithmetic/logical operations and memory is used
only for storage.

From COMSM1201, a stack supports operations:

create(): Creates a new stack.

push(x): Adds x to top of the stack.

pop(): Removes the most recently-added
piece of data from the stack and returns it.

Stacks are LIFO: “Last In, First Out”.

(The JVM is also a stack machine, so there are
good reasons to do this! We’ll see these later.)

John Lapinskas The Hack VM I 2 / 7



Stacks (reminder)

2

5

5

4

42

42

S = create();

S

S.push(2);

S.push(5);

S.pop();

S.push(4);

S.push(42);

S.pop();

The Hack VM is an example of a stack machine,
in which a stack takes the place of registers for
arithmetic/logical operations and memory is used
only for storage.

From COMSM1201, a stack supports operations:

create(): Creates a new stack.

push(x): Adds x to top of the stack.

pop(): Removes the most recently-added
piece of data from the stack and returns it.

Stacks are LIFO: “Last In, First Out”.

(The JVM is also a stack machine, so there are
good reasons to do this! We’ll see these later.)

John Lapinskas The Hack VM I 2 / 7



Stacks (reminder)

2

5

5

4

42

42

S = create();

S

S.push(2);

S.push(5);

S.pop();

S.push(4);

S.push(42);

S.pop();

The Hack VM is an example of a stack machine,
in which a stack takes the place of registers for
arithmetic/logical operations and memory is used
only for storage.

From COMSM1201, a stack supports operations:

create(): Creates a new stack.

push(x): Adds x to top of the stack.

pop(): Removes the most recently-added
piece of data from the stack and returns it.

Stacks are LIFO: “Last In, First Out”.

(The JVM is also a stack machine, so there are
good reasons to do this! We’ll see these later.)

John Lapinskas The Hack VM I 2 / 7



Stacks (reminder)

2

5

5

4

42

42

S = create();

S

S.push(2);

S.push(5);

S.pop();

S.push(4);

S.push(42);

S.pop();

The Hack VM is an example of a stack machine,
in which a stack takes the place of registers for
arithmetic/logical operations and memory is used
only for storage.

From COMSM1201, a stack supports operations:

create(): Creates a new stack.

push(x): Adds x to top of the stack.

pop(): Removes the most recently-added
piece of data from the stack and returns it.

Stacks are LIFO: “Last In, First Out”.

(The JVM is also a stack machine, so there are
good reasons to do this! We’ll see these later.)

John Lapinskas The Hack VM I 2 / 7



Stacks (reminder)

2

5

5

4

42

42

S = create();

S

S.push(2);

S.push(5);

S.pop();

S.push(4);

S.push(42);

S.pop();

The Hack VM is an example of a stack machine,
in which a stack takes the place of registers for
arithmetic/logical operations and memory is used
only for storage.

From COMSM1201, a stack supports operations:

create(): Creates a new stack.

push(x): Adds x to top of the stack.

pop(): Removes the most recently-added
piece of data from the stack and returns it.

Stacks are LIFO: “Last In, First Out”.

(The JVM is also a stack machine, so there are
good reasons to do this! We’ll see these later.)

John Lapinskas The Hack VM I 2 / 7



Stacks (reminder)

2

5

5

4

42

42

S = create();

S

S.push(2);

S.push(5);

S.pop();

S.push(4);

S.push(42);

S.pop();

The Hack VM is an example of a stack machine,
in which a stack takes the place of registers for
arithmetic/logical operations and memory is used
only for storage.

From COMSM1201, a stack supports operations:

create(): Creates a new stack.

push(x): Adds x to top of the stack.

pop(): Removes the most recently-added
piece of data from the stack and returns it.

Stacks are LIFO: “Last In, First Out”.

(The JVM is also a stack machine, so there are
good reasons to do this! We’ll see these later.)

John Lapinskas The Hack VM I 2 / 7



Stacks (reminder)

2

5

5

4

42

42

S = create();

S

S.push(2);

S.push(5);

S.pop();

S.push(4);

S.push(42);

S.pop();

The Hack VM is an example of a stack machine,
in which a stack takes the place of registers for
arithmetic/logical operations and memory is used
only for storage.

From COMSM1201, a stack supports operations:

create(): Creates a new stack.

push(x): Adds x to top of the stack.

pop(): Removes the most recently-added
piece of data from the stack and returns it.

Stacks are LIFO: “Last In, First Out”.

(The JVM is also a stack machine, so there are
good reasons to do this! We’ll see these later.)

John Lapinskas The Hack VM I 2 / 7



Stacks (reminder)

2

5

5

4

42

42

S = create();

S

S.push(2);

S.push(5);

S.pop();

S.push(4);

S.push(42);

S.pop();

The Hack VM is an example of a stack machine,
in which a stack takes the place of registers for
arithmetic/logical operations and memory is used
only for storage.

From COMSM1201, a stack supports operations:

create(): Creates a new stack.

push(x): Adds x to top of the stack.

pop(): Removes the most recently-added
piece of data from the stack and returns it.

Stacks are LIFO: “Last In, First Out”.

(The JVM is also a stack machine, so there are
good reasons to do this! We’ll see these later.)

John Lapinskas The Hack VM I 2 / 7



Stacks (reminder)

2

5

5

4

42

42

S = create();

S

S.push(2);

S.push(5);

S.pop();

S.push(4);

S.push(42);

S.pop();

The Hack VM is an example of a stack machine,
in which a stack takes the place of registers for
arithmetic/logical operations and memory is used
only for storage.

From COMSM1201, a stack supports operations:

create(): Creates a new stack.

push(x): Adds x to top of the stack.

pop(): Removes the most recently-added
piece of data from the stack and returns it.

Stacks are LIFO: “Last In, First Out”.

(The JVM is also a stack machine, so there are
good reasons to do this! We’ll see these later.)

John Lapinskas The Hack VM I 2 / 7



Stacks (reminder)

2

5

5

4

42

42

S = create();

S

S.push(2);

S.push(5);

S.pop();

S.push(4);

S.push(42);

S.pop();

The Hack VM is an example of a stack machine,
in which a stack takes the place of registers for
arithmetic/logical operations and memory is used
only for storage.

From COMSM1201, a stack supports operations:

create(): Creates a new stack.

push(x): Adds x to top of the stack.

pop(): Removes the most recently-added
piece of data from the stack and returns it.

Stacks are LIFO: “Last In, First Out”.

(The JVM is also a stack machine, so there are
good reasons to do this! We’ll see these later.)

John Lapinskas The Hack VM I 2 / 7



Stacks (reminder)

2

5

5

4

42

42

S = create();

S

S.push(2);

S.push(5);

S.pop();

S.push(4);

S.push(42);

S.pop();

The Hack VM is an example of a stack machine,
in which a stack takes the place of registers for
arithmetic/logical operations and memory is used
only for storage.

From COMSM1201, a stack supports operations:

create(): Creates a new stack.

push(x): Adds x to top of the stack.

pop(): Removes the most recently-added
piece of data from the stack and returns it.

Stacks are LIFO: “Last In, First Out”.

(The JVM is also a stack machine, so there are
good reasons to do this! We’ll see these later.)

John Lapinskas The Hack VM I 2 / 7



Virtual memory

In assembly, we use physical memory — every memory address is the exact
logical signal sent to a physical latch on a physical chip, either ROM or RAM.

An intermediate representation should be portable, so instead we work with
virtual memory. This acts like physical memory, storing one word at each
address, but we don’t worry about where each address is stored physically.

The (ISA-dependent) VM translator will then map virtual memory addresses to
physical memory addresses during compilation.1

The Hack VM has 8(!) separate virtual memory banks, which our VM translator
will map to different segments (continuous blocks) of the underlying RAM.

For now, we only care about two:

local is general-purpose storage for local variables.

constant holds the constant i at each 15-bit address i . This “memory” is
read-only and doesn’t correspond to any physical ROM or RAM.

1
In modern computers, virtual memory has a second, more important, role. Each process’ assembly code assumes it’s the

only process running and has full access to any memory address. This is actually virtual memory. The operating system then
uses dedicated machine code instructions to maintain a page table mapping each process’ virtual memory space back to physical
memory. This virtual memory may not even map to RAM — rarely-accessed data will be swapped to a page file.

John Lapinskas The Hack VM I 3 / 7



Virtual memory

In assembly, we use physical memory — every memory address is the exact
logical signal sent to a physical latch on a physical chip, either ROM or RAM.

An intermediate representation should be portable, so instead we work with
virtual memory. This acts like physical memory, storing one word at each
address, but we don’t worry about where each address is stored physically.

The (ISA-dependent) VM translator will then map virtual memory addresses to
physical memory addresses during compilation.1

The Hack VM has 8(!) separate virtual memory banks, which our VM translator
will map to different segments (continuous blocks) of the underlying RAM.

For now, we only care about two:

local is general-purpose storage for local variables.

constant holds the constant i at each 15-bit address i . This “memory” is
read-only and doesn’t correspond to any physical ROM or RAM.

1
In modern computers, virtual memory has a second, more important, role. Each process’ assembly code assumes it’s the

only process running and has full access to any memory address. This is actually virtual memory. The operating system then
uses dedicated machine code instructions to maintain a page table mapping each process’ virtual memory space back to physical
memory. This virtual memory may not even map to RAM — rarely-accessed data will be swapped to a page file.

John Lapinskas The Hack VM I 3 / 7



Syntax: Pushing and popping

S local

37

36

35

34

33

...

13

0

0

1138

451

...

push local 34

1138

push local 36

0

push local 34

1138
push constant 255

255

pop local 35

pop local 33

There’s only one stack, so we don’t create() it.

We push with the command push [memory] [address].

John Lapinskas The Hack VM I 4 / 7



Syntax: Pushing and popping

S local

37

36

35

34

33

...

13

0

0

1138

451

... push local 34

1138

push local 36

0

push local 34

1138
push constant 255

255

pop local 35

pop local 33

There’s only one stack, so we don’t create() it.

We push with the command push [memory] [address].

John Lapinskas The Hack VM I 4 / 7



Syntax: Pushing and popping

S local

37

36

35

34

33

...

13

0

0

1138

451

... push local 34

1138

push local 36

0

push local 34

1138
push constant 255

255

pop local 35

pop local 33

There’s only one stack, so we don’t create() it.

We push with the command push [memory] [address].

John Lapinskas The Hack VM I 4 / 7



Syntax: Pushing and popping

S local

37

36

35

34

33

...

13

0

0

1138

451

... push local 34

1138

push local 36

0

push local 34

1138
push constant 255

255

pop local 35

pop local 33

There’s only one stack, so we don’t create() it.

We push with the command push [memory] [address].

John Lapinskas The Hack VM I 4 / 7



Syntax: Pushing and popping

S local

37

36

35

34

33

...

13

0

0

1138

451

... push local 34

1138

push local 36

0

push local 34

1138
push constant 255

255

pop local 35

pop local 33

There’s only one stack, so we don’t create() it.

We push with the command push [memory] [address].

John Lapinskas The Hack VM I 4 / 7



Syntax: Pushing and popping

S local

37

36

35

34

33

...

13

0

0

1138

451

... push local 34

1138

push local 36

0

push local 34

1138
push constant 255

255

pop local 35

pop local 33

There’s only one stack, so we don’t create() it.

We push with the command push [memory] [address].

John Lapinskas The Hack VM I 4 / 7



Syntax: Pushing and popping

S local

37

36

35

34

33

...

13

0

0

1138

451

... push local 34

1138

push local 36

0

push local 34

1138

push constant 255
255

pop local 35

pop local 33

There’s only one stack, so we don’t create() it.

We push with the command push [memory] [address].

John Lapinskas The Hack VM I 4 / 7



Syntax: Pushing and popping

S local

37

36

35

34

33

...

13

0

0

1138

451

... push local 34

1138

push local 36

0

push local 34

1138
push constant 255

255

pop local 35

pop local 33

There’s only one stack, so we don’t create() it.

We push with the command push [memory] [address].

John Lapinskas The Hack VM I 4 / 7



Syntax: Pushing and popping

S local

37

36

35

34

33

...

13

0

0

1138

451

... push local 34

1138

push local 36

0

push local 34

1138
push constant 255

255

pop local 35

pop local 33

There’s only one stack, so we don’t create() it.

We push with the command push [memory] [address].

John Lapinskas The Hack VM I 4 / 7



Syntax: Pushing and popping

S local

37

36

35

34

33

...

13

0

0

1138

451

... push local 34

1138

push local 36

0

push local 34

1138
push constant 255

255

pop local 35

pop local 33

There’s only one stack, so we don’t create() it.

We push with the command push [memory] [address].

We pop and store the result with the command pop [memory] [address].
The value we pop is then stored at that memory address.

(Note that pop by itself is not valid syntax.)
John Lapinskas The Hack VM I 4 / 7



Syntax: Pushing and popping

S local

37

36

35

34

33

...

13

0

0

1138

451

... push local 34

1138

push local 36

0

push local 34

1138
push constant 255

255

pop local 35

pop local 33

There’s only one stack, so we don’t create() it.

We push with the command push [memory] [address].

We pop and store the result with the command pop [memory] [address].
The value we pop is then stored at that memory address.

(Note that pop by itself is not valid syntax.)
John Lapinskas The Hack VM I 4 / 7



Syntax: Pushing and popping

S local

37

36

35

34

33

...

13

0

255

1138

451

... push local 34

1138

push local 36

0

push local 34

1138
push constant 255

255

pop local 35

pop local 33

There’s only one stack, so we don’t create() it.

We push with the command push [memory] [address].

We pop and store the result with the command pop [memory] [address].
The value we pop is then stored at that memory address.

(Note that pop by itself is not valid syntax.)
John Lapinskas The Hack VM I 4 / 7



Syntax: Pushing and popping

S local

37

36

35

34

33

...

13

0

255

1138

451

... push local 34

1138

push local 36

0

push local 34

1138
push constant 255

255

pop local 35

pop local 33

There’s only one stack, so we don’t create() it.

We push with the command push [memory] [address].

We pop and store the result with the command pop [memory] [address].
The value we pop is then stored at that memory address.

(Note that pop by itself is not valid syntax.)
John Lapinskas The Hack VM I 4 / 7



Syntax: Pushing and popping

S local

37

36

35

34

33

...

13

0

255

1138

1138

... push local 34

1138

push local 36

0

push local 34

1138

push constant 255

255

pop local 35

pop local 33

There’s only one stack, so we don’t create() it.

We push with the command push [memory] [address].

We pop and store the result with the command pop [memory] [address].
The value we pop is then stored at that memory address.

(Note that pop by itself is not valid syntax.)
John Lapinskas The Hack VM I 4 / 7



Syntax: Pushing and popping

S local

37

36

35

34

33

...

13

0

255

1138

1138

... push local 34

1138

push local 36

0

push local 34

1138

push constant 255

255

pop local 35

pop local 33

Note that pushing and popping are our only form of memory management.
For example, to copy the value of local 4 into local 250, we would write:

push local 4

pop local 250

John Lapinskas The Hack VM I 4 / 7



Stack operations in Hack VM

S local

52

51

50

49

48

...

13

0

255

1138

1138

...

push local 50

255

push local 50

255

push constant 2

2
add

add

pop local 50

push local 48

1138

push local 49

1138

push constant 1138

1138
eq

eq

pop local 50

All arithmetic operations in Hack VM happen via the stack. For example, to add
two numbers, we use the add command (which has no arguments).

add pops the top two values of the stack, adds them together, and then pushes
the result back onto the stack.

Other operations use exactly the same approach and syntax (see next slide). We
can’t add two values directly from local — we must push them to the stack first.

John Lapinskas The Hack VM I 5 / 7



Stack operations in Hack VM

S local

52

51

50

49

48

...

13

0

255

1138

1138

... push local 50

255

push local 50

255

push constant 2

2
add

add

pop local 50

push local 48

1138

push local 49

1138

push constant 1138

1138
eq

eq

pop local 50

All arithmetic operations in Hack VM happen via the stack. For example, to add
two numbers, we use the add command (which has no arguments).

add pops the top two values of the stack, adds them together, and then pushes
the result back onto the stack.

Other operations use exactly the same approach and syntax (see next slide). We
can’t add two values directly from local — we must push them to the stack first.

John Lapinskas The Hack VM I 5 / 7



Stack operations in Hack VM

S local

52

51

50

49

48

...

13

0

255

1138

1138

... push local 50

255

push local 50

255

push constant 2

2
add

add

pop local 50

push local 48

1138

push local 49

1138

push constant 1138

1138
eq

eq

pop local 50

All arithmetic operations in Hack VM happen via the stack. For example, to add
two numbers, we use the add command (which has no arguments).

add pops the top two values of the stack, adds them together, and then pushes
the result back onto the stack.

Other operations use exactly the same approach and syntax (see next slide). We
can’t add two values directly from local — we must push them to the stack first.

John Lapinskas The Hack VM I 5 / 7



Stack operations in Hack VM

S local

52

51

50

49

48

...

13

0

255

1138

1138

... push local 50

255

push local 50

255

push constant 2

2
add

add

pop local 50

push local 48

1138

push local 49

1138

push constant 1138

1138
eq

eq

pop local 50

All arithmetic operations in Hack VM happen via the stack. For example, to add
two numbers, we use the add command (which has no arguments).

add pops the top two values of the stack, adds them together, and then pushes
the result back onto the stack.

Other operations use exactly the same approach and syntax (see next slide). We
can’t add two values directly from local — we must push them to the stack first.

John Lapinskas The Hack VM I 5 / 7



Stack operations in Hack VM

S local

52

51

50

49

48

...

13

0

255

1138

1138

... push local 50

255

push local 50

255

push constant 2

2
add

add

pop local 50

push local 48

1138

push local 49

1138

push constant 1138

1138
eq

eq

pop local 50

All arithmetic operations in Hack VM happen via the stack. For example, to add
two numbers, we use the add command (which has no arguments).

add pops the top two values of the stack, adds them together, and then pushes
the result back onto the stack.

Other operations use exactly the same approach and syntax (see next slide). We
can’t add two values directly from local — we must push them to the stack first.

John Lapinskas The Hack VM I 5 / 7



Stack operations in Hack VM

S local

52

51

50

49

48

...

13

0

255

1138

1138

... push local 50

255

push local 50

255

push constant 2

2
add

add

pop local 50

push local 48

1138

push local 49

1138

push constant 1138

1138
eq

eq

pop local 50

All arithmetic operations in Hack VM happen via the stack. For example, to add
two numbers, we use the add command (which has no arguments).

add pops the top two values of the stack, adds them together, and then pushes
the result back onto the stack.

Other operations use exactly the same approach and syntax (see next slide). We
can’t add two values directly from local — we must push them to the stack first.

John Lapinskas The Hack VM I 5 / 7



Stack operations in Hack VM

S local

52

51

50

49

48

...

13

0

255

1138

1138

... push local 50

255

push local 50

255

push constant 2

2

add

add

pop local 50

push local 48

1138

push local 49

1138

push constant 1138

1138
eq

eq

pop local 50

All arithmetic operations in Hack VM happen via the stack. For example, to add
two numbers, we use the add command (which has no arguments).

add pops the top two values of the stack, adds them together, and then pushes
the result back onto the stack.

Other operations use exactly the same approach and syntax (see next slide). We
can’t add two values directly from local — we must push them to the stack first.

John Lapinskas The Hack VM I 5 / 7



Stack operations in Hack VM

S local

52

51

50

49

48

...

13

0

255

1138

1138

... push local 50

255

push local 50

255

push constant 2

2
add

add

pop local 50

push local 48

1138

push local 49

1138

push constant 1138

1138
eq

eq

pop local 50

All arithmetic operations in Hack VM happen via the stack. For example, to add
two numbers, we use the add command (which has no arguments).

add pops the top two values of the stack, adds them together, and then pushes
the result back onto the stack.

Other operations use exactly the same approach and syntax (see next slide). We
can’t add two values directly from local — we must push them to the stack first.

John Lapinskas The Hack VM I 5 / 7



Stack operations in Hack VM

S local

52

51

50

49

48

...

13

0

255

1138

1138

... push local 50

255

push local 50

257

push constant 2

2

add

add

pop local 50

push local 48

1138

push local 49

1138

push constant 1138

1138
eq

eq

pop local 50

All arithmetic operations in Hack VM happen via the stack. For example, to add
two numbers, we use the add command (which has no arguments).

add pops the top two values of the stack, adds them together, and then pushes
the result back onto the stack.

Other operations use exactly the same approach and syntax (see next slide). We
can’t add two values directly from local — we must push them to the stack first.

John Lapinskas The Hack VM I 5 / 7



Stack operations in Hack VM

S local

52

51

50

49

48

...

13

0

255

1138

1138

... push local 50

255

push local 50

257

push constant 2

2

add

add

pop local 50

push local 48

1138

push local 49

1138

push constant 1138

1138
eq

eq

pop local 50

All arithmetic operations in Hack VM happen via the stack. For example, to add
two numbers, we use the add command (which has no arguments).

add pops the top two values of the stack, adds them together, and then pushes
the result back onto the stack.

Other operations use exactly the same approach and syntax (see next slide). We
can’t add two values directly from local — we must push them to the stack first.

John Lapinskas The Hack VM I 5 / 7



Stack operations in Hack VM

S local

52

51

50

49

48

...

13

0

255

1138

1138

... push local 50

512

push local 50

257

push constant 2

2

add

add

pop local 50

push local 48

1138

push local 49

1138

push constant 1138

1138
eq

eq

pop local 50

All arithmetic operations in Hack VM happen via the stack. For example, to add
two numbers, we use the add command (which has no arguments).

add pops the top two values of the stack, adds them together, and then pushes
the result back onto the stack.

Other operations use exactly the same approach and syntax (see next slide). We
can’t add two values directly from local — we must push them to the stack first.

John Lapinskas The Hack VM I 5 / 7



Stack operations in Hack VM

S local

52

51

50

49

48

...

13

0

255

1138

1138

... push local 50

512

push local 50

257

push constant 2

2

add

add

pop local 50

push local 48

1138

push local 49

1138

push constant 1138

1138
eq

eq

pop local 50

All arithmetic operations in Hack VM happen via the stack. For example, to add
two numbers, we use the add command (which has no arguments).

add pops the top two values of the stack, adds them together, and then pushes
the result back onto the stack.

Other operations use exactly the same approach and syntax (see next slide). We
can’t add two values directly from local — we must push them to the stack first.

John Lapinskas The Hack VM I 5 / 7



Stack operations in Hack VM

S local

52

51

50

49

48

...

13

0

512

1138

1138

... push local 50

512

push local 50

257

push constant 2

2

add

add

pop local 50

push local 48

1138

push local 49

1138

push constant 1138

1138
eq

eq

pop local 50

All arithmetic operations in Hack VM happen via the stack. For example, to add
two numbers, we use the add command (which has no arguments).

add pops the top two values of the stack, adds them together, and then pushes
the result back onto the stack.

Other operations use exactly the same approach and syntax (see next slide). We
can’t add two values directly from local — we must push them to the stack first.

John Lapinskas The Hack VM I 5 / 7



Stack operations in Hack VM

S local

52

51

50

49

48

...

13

0

512

1138

1138

...

push local 50

512

push local 50

257

push constant 2

2

add

add

pop local 50

push local 48

1138

push local 49

1138

push constant 1138

1138
eq

eq

pop local 50

Logical comparisons work the same way. For example, the eq command pops the
top two values of the stack, checks whether they’re equal, then pushes the result
back onto the stack.

The Hack VM represents a result of true by 0xFFFF, and false as 0x0000.
(We’ll talk more about how the Hack VM uses the results of comparisons later.)

John Lapinskas The Hack VM I 5 / 7



Stack operations in Hack VM

S local

52

51

50

49

48

...

13

0

512

1138

1138

...

push local 50

512

push local 50

257

push constant 2

2

add

add

pop local 50

push local 48

1138

push local 49

1138

push constant 1138

1138
eq

eq

pop local 50

Logical comparisons work the same way. For example, the eq command pops the
top two values of the stack, checks whether they’re equal, then pushes the result
back onto the stack.

The Hack VM represents a result of true by 0xFFFF, and false as 0x0000.
(We’ll talk more about how the Hack VM uses the results of comparisons later.)

John Lapinskas The Hack VM I 5 / 7



Stack operations in Hack VM

S local

52

51

50

49

48

...

13

0

512

1138

1138

...

push local 50

512

push local 50

257

push constant 2

2

add

add

pop local 50

push local 48

1138

push local 49

1138

push constant 1138

1138
eq

eq

pop local 50

Logical comparisons work the same way. For example, the eq command pops the
top two values of the stack, checks whether they’re equal, then pushes the result
back onto the stack.

The Hack VM represents a result of true by 0xFFFF, and false as 0x0000.
(We’ll talk more about how the Hack VM uses the results of comparisons later.)

John Lapinskas The Hack VM I 5 / 7



Stack operations in Hack VM

S local

52

51

50

49

48

...

13

0

512

1138

1138

...

push local 50

512

push local 50

257

push constant 2

2

add

add

pop local 50

push local 48

1138

push local 49

1138

push constant 1138

1138
eq

eq

pop local 50

Logical comparisons work the same way. For example, the eq command pops the
top two values of the stack, checks whether they’re equal, then pushes the result
back onto the stack.

The Hack VM represents a result of true by 0xFFFF, and false as 0x0000.
(We’ll talk more about how the Hack VM uses the results of comparisons later.)

John Lapinskas The Hack VM I 5 / 7



Stack operations in Hack VM

S local

52

51

50

49

48

...

13

0

512

1138

1138

...

push local 50

512

push local 50

257

push constant 2

2

add

add

pop local 50

push local 48

1138

push local 49

1138

push constant 1138

1138
eq

eq

pop local 50

Logical comparisons work the same way. For example, the eq command pops the
top two values of the stack, checks whether they’re equal, then pushes the result
back onto the stack.

The Hack VM represents a result of true by 0xFFFF, and false as 0x0000.
(We’ll talk more about how the Hack VM uses the results of comparisons later.)

John Lapinskas The Hack VM I 5 / 7



Stack operations in Hack VM

S local

52

51

50

49

48

...

13

0

512

1138

1138

...

push local 50

512

push local 50

257

push constant 2

2

add

add

pop local 50

push local 48

1138

push local 49

1138

push constant 1138

1138
eq

eq

pop local 50

Logical comparisons work the same way. For example, the eq command pops the
top two values of the stack, checks whether they’re equal, then pushes the result
back onto the stack.

The Hack VM represents a result of true by 0xFFFF, and false as 0x0000.
(We’ll talk more about how the Hack VM uses the results of comparisons later.)

John Lapinskas The Hack VM I 5 / 7



Stack operations in Hack VM

S local

52

51

50

49

48

...

13

0

512

1138

1138

...

push local 50

512

push local 50

257

push constant 2

2

add

add

pop local 50

push local 48

1138

push local 49

1138

push constant 1138

1138

eq

eq

pop local 50

Logical comparisons work the same way. For example, the eq command pops the
top two values of the stack, checks whether they’re equal, then pushes the result
back onto the stack.

The Hack VM represents a result of true by 0xFFFF, and false as 0x0000.
(We’ll talk more about how the Hack VM uses the results of comparisons later.)

John Lapinskas The Hack VM I 5 / 7



Stack operations in Hack VM

S local

52

51

50

49

48

...

13

0

512

1138

1138

...

push local 50

512

push local 50

257

push constant 2

2

add

add

pop local 50

push local 48

1138

push local 49

1138

push constant 1138

1138
eq

eq

pop local 50

Logical comparisons work the same way. For example, the eq command pops the
top two values of the stack, checks whether they’re equal, then pushes the result
back onto the stack.

The Hack VM represents a result of true by 0xFFFF, and false as 0x0000.
(We’ll talk more about how the Hack VM uses the results of comparisons later.)

John Lapinskas The Hack VM I 5 / 7



Stack operations in Hack VM

S local

52

51

50

49

48

...

13

0

512

1138

1138

...

push local 50

512

push local 50

257

push constant 2

2

add

add

pop local 50

push local 48

1138

push local 49

65535

push constant 1138

1138

eq

eq

pop local 50

Logical comparisons work the same way. For example, the eq command pops the
top two values of the stack, checks whether they’re equal, then pushes the result
back onto the stack.

The Hack VM represents a result of true by 0xFFFF, and false as 0x0000.
(We’ll talk more about how the Hack VM uses the results of comparisons later.)

John Lapinskas The Hack VM I 5 / 7



Stack operations in Hack VM

S local

52

51

50

49

48

...

13

0

512

1138

1138

...

push local 50

512

push local 50

257

push constant 2

2

add

add

pop local 50

push local 48

1138

push local 49

65535

push constant 1138

1138

eq

eq

pop local 50

Logical comparisons work the same way. For example, the eq command pops the
top two values of the stack, checks whether they’re equal, then pushes the result
back onto the stack.

The Hack VM represents a result of true by 0xFFFF, and false as 0x0000.
(We’ll talk more about how the Hack VM uses the results of comparisons later.)

John Lapinskas The Hack VM I 5 / 7



Stack operations in Hack VM

S local

52

51

50

49

48

...

13

0

512

1138

1138

...

push local 50

512

push local 50

257

push constant 2

2

add

add

pop local 50

push local 48

0

push local 49

65535

push constant 1138

1138

eq

eq

pop local 50

Logical comparisons work the same way. For example, the eq command pops the
top two values of the stack, checks whether they’re equal, then pushes the result
back onto the stack.

The Hack VM represents a result of true by 0xFFFF, and false as 0x0000.
(We’ll talk more about how the Hack VM uses the results of comparisons later.)

John Lapinskas The Hack VM I 5 / 7



Stack operations in Hack VM

S local

52

51

50

49

48

...

13

0

512

1138

1138

...

push local 50

512

push local 50

257

push constant 2

2

add

add

pop local 50

push local 48

0

push local 49

65535

push constant 1138

1138

eq

eq

pop local 50

Logical comparisons work the same way. For example, the eq command pops the
top two values of the stack, checks whether they’re equal, then pushes the result
back onto the stack.

The Hack VM represents a result of true by 0xFFFF, and false as 0x0000.
(We’ll talk more about how the Hack VM uses the results of comparisons later.)

John Lapinskas The Hack VM I 5 / 7



Stack operations in Hack VM

S local

52

51

50

49

48

...

13

0

0

1138

1138

...

push local 50

512

push local 50

257

push constant 2

2

add

add

pop local 50

push local 48

0

push local 49

65535

push constant 1138

1138

eq

eq

pop local 50

Logical comparisons work the same way. For example, the eq command pops the
top two values of the stack, checks whether they’re equal, then pushes the result
back onto the stack.

The Hack VM represents a result of true by 0xFFFF, and false as 0x0000.
(We’ll talk more about how the Hack VM uses the results of comparisons later.)

John Lapinskas The Hack VM I 5 / 7



Quick reference

Command Pops Computes Comment
add 2 values x + y Integer addition
sub 2 values x − y Integer subtraction
neg 1 value −y Arithmetic negation
and 2 values x&y Bitwise AND
or 2 values x | y Bitwise OR
not 1 value ¬y Bitwise NOT
eq 2 values x == y Test equality
gt 2 values x > y Test greater than
lt 2 values x < y Test less than

For operations that pop two values, y is the first value popped and x is the
second value. E.g. push constant 3, push constant 1, sub will end
with 2 on top of the stack rather than −2.

All arithmetic uses twos complement, so e.g. −x = ¬x + 1.

All logic writes true as 0xFFFF and false as 0x0000.
(This means bitwise operations double as logical operations!)

You will have this table as a reference in the exam.

John Lapinskas The Hack VM I 6 / 7



Example: Arithmetic

S local

5

4

3

2

1

0

...

256

0

64

0

0

0

“Test local 3 > 42”push local 3

push constant 42

gt

“Test local 3 < local 5− 100”push local 3

lt

“Calculate local 5− 100”push local 5

push constant 100

sub

and

For example, to test (local 3 > 42) and (local 3 < local 5− 100):

John Lapinskas The Hack VM I 7 / 7



Example: Arithmetic

S local

5

4

3

2

1

0

...

256

0

64

0

0

0

“Test local 3 > 42”

push local 3

push constant 42

gt

“Test local 3 < local 5− 100”

push local 3

lt

“Calculate local 5− 100”push local 5

push constant 100

sub

and

For example, to test (local 3 > 42) and (local 3 < local 5− 100):

Test local 3 > 42 and local 3 < local 5− 100 separately, then and

them. (Remember and, or and not are both bitwise and logical operations!)

John Lapinskas The Hack VM I 7 / 7



Example: Arithmetic

S local

5

4

3

2

1

0

...

256

0

64

0

0

0

“Test local 3 > 42”

push local 3

push constant 42

gt

“Test local 3 < local 5− 100”

push local 3

lt

“Calculate local 5− 100”push local 5

push constant 100

sub

and

For example, to test (local 3 > 42) and (local 3 < local 5− 100):

Test local 3 > 42 and local 3 < local 5− 100 separately, then and

them. (Remember and, or and not are both bitwise and logical operations!)

To test local 3 > 42, push local 3 and 42, then gt them.

John Lapinskas The Hack VM I 7 / 7



Example: Arithmetic

S local

5

4

3

2

1

0

...

256

0

64

0

0

0

“Test local 3 > 42”

push local 3

push constant 42

gt

“Test local 3 < local 5− 100”

push local 3

lt

“Calculate local 5− 100”push local 5

push constant 100

sub

and

For example, to test (local 3 > 42) and (local 3 < local 5− 100):

Test local 3 > 42 and local 3 < local 5− 100 separately, then and

them. (Remember and, or and not are both bitwise and logical operations!)

To test local 3 > 42, push local 3 and 42, then gt them.

John Lapinskas The Hack VM I 7 / 7



Example: Arithmetic

S local

5

4

3

2

1

0

...

256

0

64

0

0

0

“Test local 3 > 42”

push local 3

push constant 42

gt

“Test local 3 < local 5− 100”

push local 3

lt

“Calculate local 5− 100”push local 5

push constant 100

sub

and

For example, to test (local 3 > 42) and (local 3 < local 5− 100):

Test local 3 > 42 and local 3 < local 5− 100 separately, then and

them. (Remember and, or and not are both bitwise and logical operations!)

To test local 3 > 42, push local 3 and 42, then gt them.

To test local 3 < local 5− 100, first push local 3. Then calculate
local 5− 100 and leave it on the stack. Then lt.

John Lapinskas The Hack VM I 7 / 7



Example: Arithmetic

S local

5

4

3

2

1

0

...

256

0

64

0

0

0

“Test local 3 > 42”

push local 3

push constant 42

gt

“Test local 3 < local 5− 100”

push local 3

lt

“Calculate local 5− 100”

push local 5

push constant 100

sub

and

For example, to test (local 3 > 42) and (local 3 < local 5− 100):

Test local 3 > 42 and local 3 < local 5− 100 separately, then and

them. (Remember and, or and not are both bitwise and logical operations!)

To test local 3 > 42, push local 3 and 42, then gt them.

To test local 3 < local 5− 100, first push local 3. Then calculate
local 5− 100 and leave it on the stack. Then lt.

John Lapinskas The Hack VM I 7 / 7



Example: Arithmetic

S local

5

4

3

2

1

0

...

256

0

64

0

0

0

“Test local 3 > 42”

push local 3

push constant 42

gt

“Test local 3 < local 5− 100”

push local 3

lt

“Calculate local 5− 100”

push local 5

push constant 100

sub

and

For example, to test (local 3 > 42) and (local 3 < local 5− 100):

Test local 3 > 42 and local 3 < local 5− 100 separately, then and

them. (Remember and, or and not are both bitwise and logical operations!)

To test local 3 > 42, push local 3 and 42, then gt them.

To test local 3 < local 5− 100, first push local 3. Then calculate
local 5− 100 and leave it on the stack. Then lt.

John Lapinskas The Hack VM I 7 / 7



Example: Arithmetic

S local

5

4

3

2

1

0

...

256

0

64

0

0

0

“Test local 3 > 42”

push local 3

push constant 42

gt

“Test local 3 < local 5− 100”

push local 3

lt

“Calculate local 5− 100”

push local 5

push constant 100

sub

and

For example, to test (local 3 > 42) and (local 3 < local 5− 100):

Test local 3 > 42 and local 3 < local 5− 100 separately, then and

them. (Remember and, or and not are both bitwise and logical operations!)

To test local 3 > 42, push local 3 and 42, then gt them.

To test local 3 < local 5− 100, first push local 3. Then calculate
local 5− 100 and leave it on the stack. Then lt.

John Lapinskas The Hack VM I 7 / 7



Example: Arithmetic

S local

5

4

3

2

1

0

...

256

0

64

0

0

0

“Test local 3 > 42”

push local 3

push constant 42

gt

“Test local 3 < local 5− 100”

push local 3

lt

“Calculate local 5− 100”

push local 5

push constant 100

sub

and
64

For example, to test (local 3 > 42) and (local 3 < local 5− 100):

Test local 3 > 42 and local 3 < local 5− 100 separately, then and

them. (Remember and, or and not are both bitwise and logical operations!)

To test local 3 > 42, push local 3 and 42, then gt them.

To test local 3 < local 5− 100, first push local 3. Then calculate
local 5− 100 and leave it on the stack. Then lt.

John Lapinskas The Hack VM I 7 / 7



Example: Arithmetic

S local

5

4

3

2

1

0

...

256

0

64

0

0

0

“Test local 3 > 42”

push local 3

push constant 42

gt

“Test local 3 < local 5− 100”

push local 3

lt

“Calculate local 5− 100”

push local 5

push constant 100

sub

and
64

For example, to test (local 3 > 42) and (local 3 < local 5− 100):

Test local 3 > 42 and local 3 < local 5− 100 separately, then and

them. (Remember and, or and not are both bitwise and logical operations!)

To test local 3 > 42, push local 3 and 42, then gt them.

To test local 3 < local 5− 100, first push local 3. Then calculate
local 5− 100 and leave it on the stack. Then lt.

John Lapinskas The Hack VM I 7 / 7



Example: Arithmetic

S local

5

4

3

2

1

0

...

256

0

64

0

0

0

“Test local 3 > 42”

push local 3

push constant 42

gt

“Test local 3 < local 5− 100”

push local 3

lt

“Calculate local 5− 100”

push local 5

push constant 100

sub

and
64

42

For example, to test (local 3 > 42) and (local 3 < local 5− 100):

Test local 3 > 42 and local 3 < local 5− 100 separately, then and

them. (Remember and, or and not are both bitwise and logical operations!)

To test local 3 > 42, push local 3 and 42, then gt them.

To test local 3 < local 5− 100, first push local 3. Then calculate
local 5− 100 and leave it on the stack. Then lt.

John Lapinskas The Hack VM I 7 / 7



Example: Arithmetic

S local

5

4

3

2

1

0

...

256

0

64

0

0

0

“Test local 3 > 42”

push local 3

push constant 42

gt

“Test local 3 < local 5− 100”

push local 3

lt

“Calculate local 5− 100”

push local 5

push constant 100

sub

and
64

42

For example, to test (local 3 > 42) and (local 3 < local 5− 100):

Test local 3 > 42 and local 3 < local 5− 100 separately, then and

them. (Remember and, or and not are both bitwise and logical operations!)

To test local 3 > 42, push local 3 and 42, then gt them.

To test local 3 < local 5− 100, first push local 3. Then calculate
local 5− 100 and leave it on the stack. Then lt.

John Lapinskas The Hack VM I 7 / 7



Example: Arithmetic

S local

5

4

3

2

1

0

...

256

0

64

0

0

0

“Test local 3 > 42”

push local 3

push constant 42

gt

“Test local 3 < local 5− 100”

push local 3

lt

“Calculate local 5− 100”

push local 5

push constant 100

sub

and
65535

For example, to test (local 3 > 42) and (local 3 < local 5− 100):

Test local 3 > 42 and local 3 < local 5− 100 separately, then and

them. (Remember and, or and not are both bitwise and logical operations!)

To test local 3 > 42, push local 3 and 42, then gt them.

To test local 3 < local 5− 100, first push local 3. Then calculate
local 5− 100 and leave it on the stack. Then lt.

John Lapinskas The Hack VM I 7 / 7



Example: Arithmetic

S local

5

4

3

2

1

0

...

256

0

64

0

0

0

“Test local 3 > 42”

push local 3

push constant 42

gt

“Test local 3 < local 5− 100”

push local 3

lt

“Calculate local 5− 100”

push local 5

push constant 100

sub

and
65535

For example, to test (local 3 > 42) and (local 3 < local 5− 100):

Test local 3 > 42 and local 3 < local 5− 100 separately, then and

them. (Remember and, or and not are both bitwise and logical operations!)

To test local 3 > 42, push local 3 and 42, then gt them.

To test local 3 < local 5− 100, first push local 3. Then calculate
local 5− 100 and leave it on the stack. Then lt.

John Lapinskas The Hack VM I 7 / 7



Example: Arithmetic

S local

5

4

3

2

1

0

...

256

0

64

0

0

0

“Test local 3 > 42”

push local 3

push constant 42

gt

“Test local 3 < local 5− 100”

push local 3

lt

“Calculate local 5− 100”

push local 5

push constant 100

sub

and
65535

64

For example, to test (local 3 > 42) and (local 3 < local 5− 100):

Test local 3 > 42 and local 3 < local 5− 100 separately, then and

them. (Remember and, or and not are both bitwise and logical operations!)

To test local 3 > 42, push local 3 and 42, then gt them.

To test local 3 < local 5− 100, first push local 3. Then calculate
local 5− 100 and leave it on the stack. Then lt.

John Lapinskas The Hack VM I 7 / 7



Example: Arithmetic

S local

5

4

3

2

1

0

...

256

0

64

0

0

0

“Test local 3 > 42”

push local 3

push constant 42

gt

“Test local 3 < local 5− 100”

push local 3

lt

“Calculate local 5− 100”

push local 5

push constant 100

sub

and
65535

64

For example, to test (local 3 > 42) and (local 3 < local 5− 100):

Test local 3 > 42 and local 3 < local 5− 100 separately, then and

them. (Remember and, or and not are both bitwise and logical operations!)

To test local 3 > 42, push local 3 and 42, then gt them.

To test local 3 < local 5− 100, first push local 3. Then calculate
local 5− 100 and leave it on the stack. Then lt.

John Lapinskas The Hack VM I 7 / 7



Example: Arithmetic

S local

5

4

3

2

1

0

...

256

0

64

0

0

0

“Test local 3 > 42”

push local 3

push constant 42

gt

“Test local 3 < local 5− 100”

push local 3

lt

“Calculate local 5− 100”

push local 5

push constant 100

sub

and
65535

64

256

For example, to test (local 3 > 42) and (local 3 < local 5− 100):

Test local 3 > 42 and local 3 < local 5− 100 separately, then and

them. (Remember and, or and not are both bitwise and logical operations!)

To test local 3 > 42, push local 3 and 42, then gt them.

To test local 3 < local 5− 100, first push local 3. Then calculate
local 5− 100 and leave it on the stack. Then lt.

John Lapinskas The Hack VM I 7 / 7



Example: Arithmetic

S local

5

4

3

2

1

0

...

256

0

64

0

0

0

“Test local 3 > 42”

push local 3

push constant 42

gt

“Test local 3 < local 5− 100”

push local 3

lt

“Calculate local 5− 100”

push local 5

push constant 100

sub

and
65535

64

256

For example, to test (local 3 > 42) and (local 3 < local 5− 100):

Test local 3 > 42 and local 3 < local 5− 100 separately, then and

them. (Remember and, or and not are both bitwise and logical operations!)

To test local 3 > 42, push local 3 and 42, then gt them.

To test local 3 < local 5− 100, first push local 3. Then calculate
local 5− 100 and leave it on the stack. Then lt.

John Lapinskas The Hack VM I 7 / 7



Example: Arithmetic

S local

5

4

3

2

1

0

...

256

0

64

0

0

0

“Test local 3 > 42”

push local 3

push constant 42

gt

“Test local 3 < local 5− 100”

push local 3

lt

“Calculate local 5− 100”

push local 5

push constant 100

sub

and
65535

64

256

100

For example, to test (local 3 > 42) and (local 3 < local 5− 100):

Test local 3 > 42 and local 3 < local 5− 100 separately, then and

them. (Remember and, or and not are both bitwise and logical operations!)

To test local 3 > 42, push local 3 and 42, then gt them.

To test local 3 < local 5− 100, first push local 3. Then calculate
local 5− 100 and leave it on the stack. Then lt.

John Lapinskas The Hack VM I 7 / 7



Example: Arithmetic

S local

5

4

3

2

1

0

...

256

0

64

0

0

0

“Test local 3 > 42”

push local 3

push constant 42

gt

“Test local 3 < local 5− 100”

push local 3

lt

“Calculate local 5− 100”

push local 5

push constant 100

sub

and
65535

64

256

100

For example, to test (local 3 > 42) and (local 3 < local 5− 100):

Test local 3 > 42 and local 3 < local 5− 100 separately, then and

them. (Remember and, or and not are both bitwise and logical operations!)

To test local 3 > 42, push local 3 and 42, then gt them.

To test local 3 < local 5− 100, first push local 3. Then calculate
local 5− 100 and leave it on the stack. Then lt.

John Lapinskas The Hack VM I 7 / 7



Example: Arithmetic

S local

5

4

3

2

1

0

...

256

0

64

0

0

0

“Test local 3 > 42”

push local 3

push constant 42

gt

“Test local 3 < local 5− 100”

push local 3

lt

“Calculate local 5− 100”

push local 5

push constant 100

sub

and
65535

64

156

100

For example, to test (local 3 > 42) and (local 3 < local 5− 100):

Test local 3 > 42 and local 3 < local 5− 100 separately, then and

them. (Remember and, or and not are both bitwise and logical operations!)

To test local 3 > 42, push local 3 and 42, then gt them.

To test local 3 < local 5− 100, first push local 3. Then calculate
local 5− 100 and leave it on the stack. Then lt.

John Lapinskas The Hack VM I 7 / 7



Example: Arithmetic

S local

5

4

3

2

1

0

...

256

0

64

0

0

0

“Test local 3 > 42”

push local 3

push constant 42

gt

“Test local 3 < local 5− 100”

push local 3

lt

“Calculate local 5− 100”

push local 5

push constant 100

sub

and
65535

64

156

100

For example, to test (local 3 > 42) and (local 3 < local 5− 100):

Test local 3 > 42 and local 3 < local 5− 100 separately, then and

them. (Remember and, or and not are both bitwise and logical operations!)

To test local 3 > 42, push local 3 and 42, then gt them.

To test local 3 < local 5− 100, first push local 3. Then calculate
local 5− 100 and leave it on the stack. Then lt.

John Lapinskas The Hack VM I 7 / 7



Example: Arithmetic

S local

5

4

3

2

1

0

...

256

0

64

0

0

0

“Test local 3 > 42”

push local 3

push constant 42

gt

“Test local 3 < local 5− 100”

push local 3

lt

“Calculate local 5− 100”

push local 5

push constant 100

sub

and
65535

65535

156

100

For example, to test (local 3 > 42) and (local 3 < local 5− 100):

Test local 3 > 42 and local 3 < local 5− 100 separately, then and

them. (Remember and, or and not are both bitwise and logical operations!)

To test local 3 > 42, push local 3 and 42, then gt them.

To test local 3 < local 5− 100, first push local 3. Then calculate
local 5− 100 and leave it on the stack. Then lt.

John Lapinskas The Hack VM I 7 / 7



Example: Arithmetic

S local

5

4

3

2

1

0

...

256

0

64

0

0

0

“Test local 3 > 42”

push local 3

push constant 42

gt

“Test local 3 < local 5− 100”

push local 3

lt

“Calculate local 5− 100”

push local 5

push constant 100

sub

and
65535

65535

156

100

For example, to test (local 3 > 42) and (local 3 < local 5− 100):

Test local 3 > 42 and local 3 < local 5− 100 separately, then and

them. (Remember and, or and not are both bitwise and logical operations!)

To test local 3 > 42, push local 3 and 42, then gt them.

To test local 3 < local 5− 100, first push local 3. Then calculate
local 5− 100 and leave it on the stack. Then lt.

John Lapinskas The Hack VM I 7 / 7



Example: Arithmetic

S local

5

4

3

2

1

0

...

256

0

64

0

0

0

“Test local 3 > 42”

push local 3

push constant 42

gt

“Test local 3 < local 5− 100”

push local 3

lt

“Calculate local 5− 100”

push local 5

push constant 100

sub

and
65535

65535

156

100

For example, to test (local 3 > 42) and (local 3 < local 5− 100):

Test local 3 > 42 and local 3 < local 5− 100 separately, then and

them. (Remember and, or and not are both bitwise and logical operations!)

To test local 3 > 42, push local 3 and 42, then gt them.

To test local 3 < local 5− 100, first push local 3. Then calculate
local 5− 100 and leave it on the stack. Then lt.

John Lapinskas The Hack VM I 7 / 7



Example: Arithmetic

S local

5

4

3

2

1

0

...

256

0

64

0

0

0

“Test local 3 > 42”

push local 3

push constant 42

gt

“Test local 3 < local 5− 100”

push local 3

lt

“Calculate local 5− 100”

push local 5

push constant 100

sub

and
65535

65535

156

100

In the workshop this week you’ll see how to convert a general arithmetic expression
into “stack order”, a.k.a. “Reverse Polish Notation”, using trees and grammars.
(This is non-examinable!)

For now, it’s enough to see how it’s possible.

[See video for a demonstration on the VM emulator.]

John Lapinskas The Hack VM I 7 / 7


