
The Hack VM II: Branching and memory
COMSM1302 Overview of Computer Architecture

John Lapinskas, University of Bristol

John Lapinskas The Hack VM II 1 / 7



Labels and gotos in Hack VM

How do we handle loops and conditionals in the Hack VM?

The same way as in assembly — with jumps, which we now call gotos as
they need no longer correspond to only a single machine code instruction.

The syntax is:

label LABEL NAME declares a label at that point of the code.

goto LABEL NAME jumps to that label from anywhere in the code.1

if-goto LABEL NAME pops the stack and executes goto
LABEL NAME if the result is non-zero (i.e. if it is not false).

We should use if-goto in the same way that we would use D;JNE in
assembly. The differences are:

The value we compare to zero is the top of the stack instead of D.

We have proper logical operators gt, eq, lt, and, or and not built
into the language to replace the various jump conditions.

1Strictly speaking, the goto and label must be in the same function — see next week.

John Lapinskas The Hack VM II 2 / 7



Labels and gotos in Hack VM

How do we handle loops and conditionals in the Hack VM?

The same way as in assembly — with jumps, which we now call gotos as
they need no longer correspond to only a single machine code instruction.

The syntax is:

label LABEL NAME declares a label at that point of the code.

goto LABEL NAME jumps to that label from anywhere in the code.1

if-goto LABEL NAME pops the stack and executes goto
LABEL NAME if the result is non-zero (i.e. if it is not false).

We should use if-goto in the same way that we would use D;JNE in
assembly. The differences are:

The value we compare to zero is the top of the stack instead of D.

We have proper logical operators gt, eq, lt, and, or and not built
into the language to replace the various jump conditions.

1Strictly speaking, the goto and label must be in the same function — see next week.
John Lapinskas The Hack VM II 2 / 7



Labels and gotos in Hack VM

How do we handle loops and conditionals in the Hack VM?

The same way as in assembly — with jumps, which we now call gotos as
they need no longer correspond to only a single machine code instruction.

The syntax is:

label LABEL NAME declares a label at that point of the code.

goto LABEL NAME jumps to that label from anywhere in the code.1

if-goto LABEL NAME pops the stack and executes goto
LABEL NAME if the result is non-zero (i.e. if it is not false).

We should use if-goto in the same way that we would use D;JNE in
assembly. The differences are:

The value we compare to zero is the top of the stack instead of D.

We have proper logical operators gt, eq, lt, and, or and not built
into the language to replace the various jump conditions.

1Strictly speaking, the goto and label must be in the same function — see next week.
John Lapinskas The Hack VM II 2 / 7



pointer and this

With local, we can only push from or pop to memory addresses known
before runtime. This can present problems.

Say we have an array stored in memory and want to access the local 0’th
element of it. But e.g. push local (local 0) is not valid VM code!

Instead, we can use pointer and this, two special memory segments.
The map from this addresses to physical RAM is not fixed in advance,
but determined at run-time. We are guaranteed that:

this 0 maps to RAM[pointer 0],

this 1 maps to RAM[(pointer 0) + 1],

this 2 maps to RAM[(pointer 0) + 2]

and so on.

John Lapinskas The Hack VM II 3 / 7



pointer and this

With local, we can only push from or pop to memory addresses known
before runtime. This can present problems.

Say we have an array stored in memory and want to access the local 0’th
element of it. But e.g. push local (local 0) is not valid VM code!

Instead, we can use pointer and this, two special memory segments.
The map from this addresses to physical RAM is not fixed in advance,
but determined at run-time. We are guaranteed that:

this 0 maps to RAM[pointer 0],

this 1 maps to RAM[(pointer 0) + 1],

this 2 maps to RAM[(pointer 0) + 2]

and so on.

John Lapinskas The Hack VM II 3 / 7



Implementing arrays in Hack VM

We are guaranteed that this i maps to RAM[(pointer 0) + i ] for all i .

We will still need to decide in advance which segments of physical memory will
hold our array, just like with assembly. But if we have decided it will be stored in
RAM[0x0800]–RAM[0x08FF] (say), then e.g.:

push constant 2048

push local 0

add // Stack now contains (local 0) + 0x0800

pop pointer 0 // this i now maps to (local 0) + 0x0800 + i

push this 0

will load the local 0’th element of the array onto the stack (counting from 0).

Of course, if local 0 is 256 or more then we’ll run into problems!

Our high-level language will handle this memory allocation automatically, but for
now we do it manually. Life is suffering.

John Lapinskas The Hack VM II 4 / 7



Implementing arrays in Hack VM

We are guaranteed that this i maps to RAM[(pointer 0) + i ] for all i .

We will still need to decide in advance which segments of physical memory will
hold our array, just like with assembly. But if we have decided it will be stored in
RAM[0x0800]–RAM[0x08FF] (say), then e.g.:

push constant 2048

push local 0

add // Stack now contains (local 0) + 0x0800

pop pointer 0 // this i now maps to (local 0) + 0x0800 + i

push this 0

will load the local 0’th element of the array onto the stack (counting from 0).

Of course, if local 0 is 256 or more then we’ll run into problems!

Our high-level language will handle this memory allocation automatically, but for
now we do it manually. Life is suffering.

John Lapinskas The Hack VM II 4 / 7



Implementing I/O in Hack VM

For I/O, we can use the same trick to access RAM[0x4000–0x5FFF] for
the screen and RAM[0x6000] for the keyboard... right?

Yes, but annoyingly we can’t use this for it. We’ll see later that this has
a special role in compiling abstract data types like C’s structs, so it can’t
map to arbitrary segments of memory. This will make sense in week 11!

For now, you only need to know that the this segment can only be used
to access RAM[0x0800–0x3FFF]. For anything outside that, we must
instead use the that memory segment.

that behaves almost exactly like this. The only differences are:

The map is from that 0 to RAM[pointer 1] not RAM[pointer 0].

that can be used to access any address of physical RAM, not just
RAM[0x0800–0x3FFF].

We’ll discuss memory mapping in more detail next video.

John Lapinskas The Hack VM II 5 / 7



Implementing I/O in Hack VM

For I/O, we can use the same trick to access RAM[0x4000–0x5FFF] for
the screen and RAM[0x6000] for the keyboard... right?

Yes, but annoyingly we can’t use this for it. We’ll see later that this has
a special role in compiling abstract data types like C’s structs, so it can’t
map to arbitrary segments of memory. This will make sense in week 11!

For now, you only need to know that the this segment can only be used
to access RAM[0x0800–0x3FFF]. For anything outside that, we must
instead use the that memory segment.

that behaves almost exactly like this. The only differences are:

The map is from that 0 to RAM[pointer 1] not RAM[pointer 0].

that can be used to access any address of physical RAM, not just
RAM[0x0800–0x3FFF].

We’ll discuss memory mapping in more detail next video.

John Lapinskas The Hack VM II 5 / 7



Implementing I/O in Hack VM

For I/O, we can use the same trick to access RAM[0x4000–0x5FFF] for
the screen and RAM[0x6000] for the keyboard... right?

Yes, but annoyingly we can’t use this for it. We’ll see later that this has
a special role in compiling abstract data types like C’s structs, so it can’t
map to arbitrary segments of memory. This will make sense in week 11!

For now, you only need to know that the this segment can only be used
to access RAM[0x0800–0x3FFF]. For anything outside that, we must
instead use the that memory segment.

that behaves almost exactly like this. The only differences are:

The map is from that 0 to RAM[pointer 1] not RAM[pointer 0].

that can be used to access any address of physical RAM, not just
RAM[0x0800–0x3FFF].

We’ll discuss memory mapping in more detail next video.

John Lapinskas The Hack VM II 5 / 7



The eight virtual memory segments

We’ve seen local, constant, this, that and pointer. What are the
other three virtual memory segments and why do they exist?

static and argument will behave differently to local in function
calls, which we discuss next week. More detail then, but in short:

At the start of a function call, local will be empty. Its contents will be
discarded on a function return.
At the start of a function call, argument will hold the arguments of
that call. It cannot be written to.
The contents of static persist between function calls. (It will be used
later for static and global variables in our high-level language.)

temp behaves exactly like local, but is mapped to a much smaller
area of memory. It’s intended as “working space” for use by a
compiler from a high-level language for compiling an individual
instruction without needing to disrupt the contents of local.

John Lapinskas The Hack VM II 6 / 7



The eight virtual memory segments

We’ve seen local, constant, this, that and pointer. What are the
other three virtual memory segments and why do they exist?

static and argument will behave differently to local in function
calls, which we discuss next week. More detail then, but in short:

At the start of a function call, local will be empty. Its contents will be
discarded on a function return.
At the start of a function call, argument will hold the arguments of
that call. It cannot be written to.
The contents of static persist between function calls. (It will be used
later for static and global variables in our high-level language.)

temp behaves exactly like local, but is mapped to a much smaller
area of memory. It’s intended as “working space” for use by a
compiler from a high-level language for compiling an individual
instruction without needing to disrupt the contents of local.

John Lapinskas The Hack VM II 6 / 7



The eight virtual memory segments

We’ve seen local, constant, this, that and pointer. What are the
other three virtual memory segments and why do they exist?

static and argument will behave differently to local in function
calls, which we discuss next week. More detail then, but in short:

At the start of a function call, local will be empty. Its contents will be
discarded on a function return.

At the start of a function call, argument will hold the arguments of
that call. It cannot be written to.
The contents of static persist between function calls. (It will be used
later for static and global variables in our high-level language.)

temp behaves exactly like local, but is mapped to a much smaller
area of memory. It’s intended as “working space” for use by a
compiler from a high-level language for compiling an individual
instruction without needing to disrupt the contents of local.

John Lapinskas The Hack VM II 6 / 7



The eight virtual memory segments

We’ve seen local, constant, this, that and pointer. What are the
other three virtual memory segments and why do they exist?

static and argument will behave differently to local in function
calls, which we discuss next week. More detail then, but in short:

At the start of a function call, local will be empty. Its contents will be
discarded on a function return.
At the start of a function call, argument will hold the arguments of
that call. It cannot be written to.

The contents of static persist between function calls. (It will be used
later for static and global variables in our high-level language.)

temp behaves exactly like local, but is mapped to a much smaller
area of memory. It’s intended as “working space” for use by a
compiler from a high-level language for compiling an individual
instruction without needing to disrupt the contents of local.

John Lapinskas The Hack VM II 6 / 7



The eight virtual memory segments

We’ve seen local, constant, this, that and pointer. What are the
other three virtual memory segments and why do they exist?

static and argument will behave differently to local in function
calls, which we discuss next week. More detail then, but in short:

At the start of a function call, local will be empty. Its contents will be
discarded on a function return.
At the start of a function call, argument will hold the arguments of
that call. It cannot be written to.
The contents of static persist between function calls. (It will be used
later for static and global variables in our high-level language.)

temp behaves exactly like local, but is mapped to a much smaller
area of memory. It’s intended as “working space” for use by a
compiler from a high-level language for compiling an individual
instruction without needing to disrupt the contents of local.

John Lapinskas The Hack VM II 6 / 7



The eight virtual memory segments

We’ve seen local, constant, this, that and pointer. What are the
other three virtual memory segments and why do they exist?

static and argument will behave differently to local in function
calls, which we discuss next week. More detail then, but in short:

At the start of a function call, local will be empty. Its contents will be
discarded on a function return.
At the start of a function call, argument will hold the arguments of
that call. It cannot be written to.
The contents of static persist between function calls. (It will be used
later for static and global variables in our high-level language.)

temp behaves exactly like local, but is mapped to a much smaller
area of memory. It’s intended as “working space” for use by a
compiler from a high-level language for compiling an individual
instruction without needing to disrupt the contents of local.

John Lapinskas The Hack VM II 6 / 7



Putting it all together: fill.asm as VM code

Recall our assembly program fill.asm, which filled every pixel of the screen
black. While any key was held, the screen would instead be filled white.

We implement the same program in Hack VM as fill.vm, for comparison.

[See video for live coding and demonstration.]

John Lapinskas The Hack VM II 7 / 7


