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Tokens for the Hack VM

Keywords:
‘push’, ‘pop’, ‘add’, ‘sub’, ‘neg’, ‘and’, ‘or’, ‘not’, ‘eq’, ‘gt’, ‘lt’,
‘local’, ‘constant’, ‘this’, ‘that’, ‘pointer’, ‘argument’,
‘static’, ‘temp’,
‘label’, ‘goto’, ‘if-goto’,
‘function’, ‘call’, ‘return’ (covered next week!)

Integer literals: Any base-10 integer in the range 0 . . . 32767.

Identifiers: Any string containing no whitespace that’s not a keyword
and starts with a letter.

Newlines.

There’s nothing new here — you already know how lexers work, so we’ve
written this part of the compiler for you.

With the assembler, we built a symbol table of labels as part of lexing.
Here, we don’t need a symbol table of labels unless we’re trying for good
error handling (which we’re not). Can you see why?
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Implementing labels and gotos

In Hack assembly, we read labels into a symbol table during lexing. Here...

Source: Generated with imgflip (here)

I prefer the top option myself, but you do you.
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A grammar for the Hack VM

There are many possible grammars for Hack VM. Here’s one.

⟨instruction⟩ ::= (‘push’, ⟨data⟩ | ‘pop’, ⟨data⟩ |
‘add’ | ‘sub’ | ‘neg’ | ‘and’ | ‘or’ | ‘not’ | ‘eq’ | ‘gt’ | ‘lt’ |
‘label’, identifier | ‘goto’, identifier | ‘if-goto’, identifier | ‘function’, identifier, integerLiteral |
‘function’, identifier, integerLiteral |
‘call’, identifier, integerLiteral | ‘return’), newline

⟨data⟩ ::= (‘local’ | ‘constant’ | ‘this’ | ‘that’ | ‘pointer’ |
‘argument’ | ‘static’ | ‘temp’), integerLiteral

This is actually far simpler than Hack assembly — it’s an LL(1) grammar,
and we can tell how to parse every ⟨instruction⟩ based on its first token.

The hard part is actually translating VM instructions into assembly!

You can work most of this out for yourselves, but we’ll cover memory and
the stack in detail.
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Allocating memory

The general purpose of mapping virtual memory to physical memory
(allocating memory) is the same as with this and that.

Say we want to map local to physical memory. Then:

We choose an address in RAM, say 300.

We map local 0 to RAM[300].

We map local 1 to RAM[301].

We map local 2 to RAM[302].

· · ·
We map local whatever to RAM[300 + whatever ].

We call 300 the base address, and the number after local the offset.
Thus every address in local is mapped to the base address plus the offset.

For example, pointer 0 is the base address of this, and pointer 1 is
the base address of that.
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Hardware limitations on memory

The Hack VM has 64KB of memory attached to each of the eight virtual memory
segments (in the form of 32,768 16-bit words) and a stack which can be infinitely
tall. The Hack CPU supports 64KB of memory in total. Something has to give.1

So we give each memory segment a length and forbid access to any area of
memory past that. For example, if we allocate local a segment of length 5, then
we allow access to local 0 through local 4 only.

We are then free to take the address that would be local 5 to be (for example)
the base address of argument.

Modern systems enforce this carefully. If a process tries to access a value outside
one of its allocated segments, then a hardware interrupt is generated — typically
leading to a segmentation fault crash.

(If the memory segment is for the stack, then the error is a stack overflow.)

This requires hardware support Hack doesn’t have, so we would have to do this
(inefficiently) in software. For now, we just track segment lengths manually.

1
This isn’t unique to Hack VM — most models of computation will assume access to infinite storage. Turing machines

have an infinite tape, C programs have no hard limit on how much you can malloc before freeing.
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Example: Memory allocation in C

A long long in C is a 64-bit integer, one word of memory on a 64-bit computer.

The C code long long myArray[128]; allocates a segment of 128 words of
memory and stores the base address in the long long * variable myArray.

The code myArray[50] then returns the long long stored at address
myArray+ 50, i.e. the 51st entry of the array.

The code myArray[128] attempts to access the long long stored at address
myArray+ 128. But this is outside the allocated segment (by one word), so we
get a segmentation fault.

Arrays of other types are handled analogously, but with allowances for different
data sizes. E.g. short *myArray = malloc(64*sizeof(short)); would
allocate a segment of 16 words of memory and store four 16-bit shorts in each
word. myArray[50] would retrieve the third short stored at address myArray+
12. CPUs with modern ISAs can manipulate data stored this way very efficiently.

(Many IDEs for C, including e.g. CLion, support memory and disassembly views.
So you can write some simple test code and investigate for yourself!)
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Memory allocation in Hack

These details are all specific to our implementation of the Hack VM. They’re not
part of the Hack VM itself, but e.g. the Nand2tetris VM emulator assumes them.

The mystery keywords of Hack assembly (except SP) we haven’t explained yet are
all variables which hold the base addresses of memory segments:

The base address of local is stored in RAM[1] = LCL.

The base address of argument is stored in RAM[2] = ARG.

pointer is allocated a fixed segment of length 2 and base address 3. So:

The base address of this, pointer 0, is stored in RAM[3] = THIS.
The base address of that, pointer 1, is stored in RAM[4] = THAT.

temp is allocated a fixed segment of length 8 and base address 5.

static is allocated a fixed segment of length 240 and base address 16.

If compiling file Foo.vm, the address static 5 should be mapped to
the Hack assembly variable Foo.5. (Explanation next week!)

constant does not appear in physical memory.

For now, we assume that RAM[1–4] are initialised to sensible values for us at the
start of code execution. (The provided test scripts do this!)
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Implementing the stack

We allocate the stack a fixed segment of memory as well, with length 1792
and base address 256. The address one word past the top of the stack is
stored in RAM[0] = SP. (SP stands for Stack Pointer.)

When we push a new value x onto the stack, we write x to RAM[SP], then
increment SP.

When we pop a value from the stack into RAM[i ], we decrement SP, then
copy RAM[SP] to RAM[i ].

Note that we don’t need to zero RAM[SP] here! Since the whole segment
is reserved for the stack, it will be overwritten the next time it’s accessed
anyway.

Technically we will also store local and argument as sub-segments of the
stack. But don’t worry about that for this week!

[See video for a demonstration of memory handling in the VM emulator.]
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Hack VM memory: A summary

Keyword Addresses Usage
SP 0 [Address of the topmost stack value] + 1.
LCL 1 Stores base address of local segment.
ARG 2 Stores base address of argument segment.
THIS 3 pointer 0 (i.e. base address of this segment).
THAT 4 pointer 1 (i.e. base address of that segment).
R5–R12 5–12 temp segment (max size 8).
R13–R15 13–15 Temporary variables for VM translator (if needed).
N/A 16–255 static segment (max size 240).
N/A 256–2047 Reserved for the stack, including local and

argument segments (max size 1792 combined).
N/A 2048–16383 “Heap” memory for other purposes. Can be

allocated to this or that segments.
SCREEN 16384–24575 Memory-mapped output to screen.
KBD 24576 Memory-mapped input from keyboard.

You’ll be given this table as a reference in the exam!
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